李宏毅机器学习2022-HW8-Anomaly Detection
文章目录
- Task
- Baseline
- Report
- Question2
- Code Link
Task
异常检测Anomaly Detection

将data经过Encoder,在经过Decoder,根据输入和输出的差距来判断异常图像。training data是100000张人脸照片,testing data有大约10000张跟training data相同分布的人脸照片(label 0),还有10000张不同分布的照片(anomaly, label 1),每张照片都是(64,64,3),.npy file
以训练集的前三张照片为例,auto-encoder的输入和输出如下:

Baseline
Auto-encoder model一共有五种模型
- fcn: fully-connected network
- cnn: convolutional network
- VAE
- Resnet
- Multi-encoder autoencoder
- encoder(fcn+fcn+fcn)+decoder(fcn)
- encoder(cnn+cnn+cnn)+decoder(cnn)
- encoder(fcn+fcn+conv)+decoder(fcn)
通过FCN+调节超参数的方式可以轻易的达到strong,Resnet也是但是Multi-encoder的方式表现并不好,也许是我处理方式有问题,具体代码可以参考GitHub中的文件
Report
Question2
Train a fully connected autoencoder and adjust at least two different element of the latent representation. Show your model architecture, plot out the original image, the reconstructed images for each adjustment and describe the differences.
import matplotlib.pyplot as plt
# sample = train_dataset[random.randint(0,100000)]
sample = train_dataset[0]
print("sample shape:{}".format(sample.size()))
sample = sample.reshape(1,3,64,64)model.eval()
with torch.no_grad():img = sample.cuda()# 只调整fcn中的latent representation的其中两维,其他模型都是正常输出if model_type in ['res']:output = model(img)output = decoder(output)print("res output shape:{}".format(output.size()))output = output[0] # 第一个重建图像,当然只有一个图像if model_type in ['fcn']:img = img.reshape(img.shape[0], -1)x = model.encoder(img)x[0][2] = x[0][2]*3output = model.decoder(x)print("fcn output shape:{}".format(output.size()))output = output.reshape(3,64,64)if model_type in ['vae']:output = model(img)print("vae output shape:{}".format(output.size()))output = output[0][0] # output[0]是重建后的图像,output[0][0]重建后的第一个图像if model_type in ['cnn']:output = model(img)[0]print("output shape:{}".format(output.size()))sample = sample.reshape(3,64,64) # 创建画布
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(5, 5))# plt sample image
axes[0].imshow(transforms.ToPILImage()((sample+1)/2)) #imshow的输入(H,W,C)
axes[0].axis('off')
axes[0].annotate('sample input', xy=(0.5, -0.15), xycoords='axes fraction',ha='center', va='center')
# plt output image
axes[1].imshow(transforms.ToPILImage()((output+1)/2))
axes[1].axis('off')
axes[1].annotate('sample output', xy=(0.5, -0.15), xycoords='axes fraction',ha='center', va='center')plt.show()

Code Link
具体代码在Github
相关文章:
李宏毅机器学习2022-HW8-Anomaly Detection
文章目录 TaskBaselineReportQuestion2 Code Link Task 异常检测Anomaly Detection 将data经过Encoder,在经过Decoder,根据输入和输出的差距来判断异常图像。training data是100000张人脸照片,testing data有大约10000张跟training data相同…...
用户体验分享 | YashanDB V23.2.3安装部署
近期崖山新版体验过程中,总能看到用户提问:openssl版本问题、monit命令找不到问题、yashan用户权限问题、数据库重装问题 今日整理了多位用户的安装经验,希望能够帮助到大家~ 1.Lucifer三思而后行 :YashanDB 个人版数据库安装部…...
【漏洞复现】泛微OA E-Office /E-mobile/App/init.php 任意文件上传漏洞
免责声明: 本文旨在提供有关特定漏洞的信息,以帮助用户了解潜在风险。发布此信息旨在促进网络安全意识和技术进步,并非出于恶意。读者应理解,利用本文提到的漏洞或进行相关测试可能违反法律或服务协议。未经授权访问系统、网络或应用程序可能导致法律责任或严重后果…...
SpringCloudEureka实战:搭建EurekaServer
1、依赖引入 <dependencies><!-- 注册中心 --><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId></dependency> </dependencies> <de…...
DataLight(V1.4.5) 版本更新,新增 Ranger、Solr
DataLight(V1.4.5) 版本更新,新增 Ranger、Solr DataLight 迎来了重大的版本更新,现已发布 V1.4.5 版本。本次更新对平台进行了较多的功能拓展和优化,新增了对 Ranger 和 Solr 服务组件的支持,同时对多项已…...
深度解析:Python蓝桥杯青少组精英赛道与高端题型概览
目录 一、蓝桥杯青少组简介二、赛项组别与年龄范围三、比赛内容与题型1. 基础知识范围2. 题型设置2.1 选择题2.2 编程题 3. 考试时长 四、奖项设置与激励措施五、总结 一、蓝桥杯青少组简介 蓝桥杯全国软件和信息技术专业人才大赛(简称“蓝桥杯”)是由工…...
如何使用SCCMSecrets识别SCCM策略中潜在的安全问题
关于SCCMSecrets SCCMSecrets是一款针对SCCM策略的安全扫描与检测工具,该工具旨在提供一种有关 SCCM 策略的全面安全检测方法。 该工具可以从各种权限级别执行,并将尝试发现与策略分发相关的潜在错误配置。除了分发点上托管的包脚本外,它还将…...
Qt 信号重载问题--使用lambda表达式--解决方法
在connect()中,使用lambda表达式时遇到信号重载,无法识别使用哪个参数时,可通过以下方法处理: 1. 使用QOverload: Qt5.7才有 connect(comboBox,QOverload<int>::of(&QComboBox::currentIndexChanged), [](int index)…...
并行编程实战——TBB框架的应用之一Supra的基础
一、TBB的应用 在前面分析了TBB框架的各种基本知识和相关的基础应用。这些基础的应用很容易通过学习文档或相关的代码来较为轻松的掌握。为了能够更好的理解TBB框架的优势,这里从一个开源的应用程序来分析一下TBB在其中的更高一层的抽象应用,以方便开发…...
std::vector
std::vector是C标准库中一个非常强大的容器类,它提供了动态数组的功能。std::vector可以自动调整大小,提供了随机访问的能力,同时还支持在序列的尾部高效地添加和删除元素。 当创建一个空的std::vector对象时,它不分配任何内存&a…...
Java Web 之 Cookie 详解
在 JavaWeb 开发中,Cookie 就像网站给浏览器贴的小纸条,用于记录一些用户信息或状态,方便下次访问时识别用户身份或进行个性化服务。 也可以这么理解: 场景一:想象一下,你去一家咖啡店,店员认…...
linux系统下让.py文件开机自启动
一 创建服务文件 1、打开终端 2、切换到root用户 sudo su3、创建一个新的systemd服务文件 nano /etc/systemd/system/total_test0619.service 4、在服务文件中添加以下内容 [Unit] DescriptionRun total_test0619.py at startup[Service] Typesimple ExecStart/usr/bin/n…...
linux远程桌面:xrdp 安装失败
window 如何远程 Linux 桌面 安装xrdp yum install xrdpsystemctl start xrdp 如果找不到软件包,就安装epel源,最好改成国内镜像的 在 /etc/yum.repos.d/ 下创建epel.repo,内容如下 [epel] nameExtra Packages for Enterprise Linux 7 - $basearch …...
9.30Python基础-元组(补充)、字典、集合
Python元组(tuple)补充 1、元组的不可变性 元组(tuple)是Python中的一种内置数据类型,用于存储不可变的序列。虽然元组本身不可变,但元组内的元素如果是可变对象(如列表)ÿ…...
桥接模式和NET模式的区别
桥接模式和NET模式的区别 NAT模式: NAT:网络地址转换(模式):借助宿主机来上网,没桥接那么麻烦,只用配置DNS即可。 缺点:扎根于宿主机,不能和局域网内其它真实的主机进行…...
Pigar:Python 项目的依赖管理利器
🌟 引言 在Python项目开发过程中,依赖管理是一个不可忽视的环节。一个精确且易于维护的requirements.txt文件对于项目的部署和协作至关重要。今天,我们将介绍一款名为Pigar的自动生成requirements.txt文件的依赖管理工具,它通过一…...
泰勒图 ——基于相关性与标准差的多模型评价指标可视化比较-XGBoost、sklearn
1、基于相关性与标准差的多模型评价指标可视化比较 # 数据读取并分割 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split plt.rcParams[font.family] = Times New Roman plt.rcParams[axes.unic…...
记录|Modbus-TCP产品使用记录【摩通传动】
目录 前言一、摩通传动实验图1.1 配置软件 IO_Studio1.2 测试软件Modbus Poll1.2.1 读写设置测试1.2.2 AI信号的读取 1.3 对应的C#连接Modbus的测试代码如下【自制,仅供参考】1.4 最终实验图 更新时间 前言 参考文章: 自己需要了解和对比某些产品的Modbu…...
工业交换机的RMON
工业交换机在现代网络中扮演着至关重要的角色,它不仅负责数据的高效传输,还具备强大的监控和管理能力。其中,RMON(远程监控)功能使得交换机的性能得以进一步提升,成为网络管理的重要工具。RMON提供了一种先…...
生态遥感数据下载分享
中国土壤湿度/土壤水分数据集(2000-2020) 下载网站:https://poles.tpdc.ac.cn/zh-hans/data/49b22de9-5d85-44f2-a7d5-a1ccd17086d2/#:~:text%E6%88%91%E4%BB%AC%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%AD%E5%9B%BD%E8%8C%83 note: The data can …...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
