当前位置: 首页 > news >正文

九龙坡做网站/seo站长工具查询系统

九龙坡做网站,seo站长工具查询系统,网络规划师含金量,做网站用什么开源程序论文网址:Multi-Channel Graph Neural Network for Entity Alignment (aclanthology.org) 论文代码:https:// github.com/thunlp/MuGNN 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&a…

论文网址:Multi-Channel Graph Neural Network for Entity Alignment (aclanthology.org)

论文代码:https:// github.com/thunlp/MuGNN

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Preliminaries and Framework

2.3.1. Preliminaries

2.3.2. Framework

2.4. KG Completion

2.4.1. Rule Inference and Transfer

2.4.2. Rule Grounding

2.5. Multi-Channel Graph Neural Network

2.5.1. Relation Weighting

2.5.2. Multi-Channel GNN Encoder

2.5.3. Align Model

2.6. Experiment

2.6.1. Experiment Settings

2.6.2. Overall Performance

2.6.3. Impact of Two Channels and Rule Transfer

2.6.4. Impact of Seed Alignments

2.6.5. Qualitative Analysis

2.7. Related Work

2.8. Conclusions

3. 知识补充

3.1. Adagrad Optimizer

4. Reference


1. 心得

(1)是比较容易理解的论文

2. 论文逐段精读

2.1. Abstract

        ①Limitations of entity alignment: structural heterogeneity and limited seed alignments

        ②They proposed Multi-channel Graph Neural Network model (MuGNN)

2.2. Introduction

        ①Knowledge graph (KG) stores information by directed graph, where the nodes are entity and the edges denote relationship

        ②Mother tongue information usually stores more information:

(作者觉得KG1的Jilin会对齐KG2的Jilin City,因为他们有相似的方言和连接的长春。这个感觉不是一定吧?取决于具体模型?感觉还是挺有差别的啊这俩东西,结构上也没有很相似

        ③To solve the problem, it is necessary to fill in missing entities and eliminate unnecessary ones

2.3. Preliminaries and Framework

2.3.1. Preliminaries

(1)KG

        ①Defining a directed graph G=\left ( E,R,T \right ), which contains entity set E, relation set R and triplets T
        ②Triplet t=(e_{i},r_{ij},e_{j})\in T

(2)Rule knowledge

        ①For rule k=(r_{c}|r_{s1},\cdots,r_{sp})\mathcal{K}=\{k\}, it means there are \forall x,y\in E:(x,r_{s},y)\Rightarrow (x,r_{c},y)

(3)Rule Grounding

        ①通过上面的递推,实体可以找到更进一步的关系

(4)Entity alignment

        ①Alignments in two entities: \mathcal{A}_{e}=\{(e,e^{\prime}) \in E\times E^{\prime}|e \leftrightarrow e^{\prime}\}

        ②Alignment relation: \mathcal{A}_{r}^{s}=\{(r,r^{\prime})\in R\times R'|r\leftrightarrow r'\}

2.3.2. Framework

        ①Workflow of MuGNN:

(1)KG completion

        ①Adopt rule mining system AMIE+

(2)Multi-channel Graph Neural Network

        ①Encoding KG in different channels

2.4. KG Completion

2.4.1. Rule Inference and Transfer

        

2.4.2. Rule Grounding

        ①比如从KG2中找到province(x,y) \wedge dialect(y,z) \Rightarrow dialect(x,z)关系,就可以补充到KG1中去

2.5. Multi-Channel Graph Neural Network

2.5.1. Relation Weighting

        ①They will generate a weighted relationship matrix

        ②They construct self attention adjacency matrix and cross-KG attention adjacency matrix for each channel

(1)KG Self-Attention(这个是为了补齐)

        ①Normalized connection weights:

a_{ij}=softmax(c_{ij})=\frac{exp(c_{ij})}{\sum_{e_{k}\in N_{e_{i}}\cup e_{i}}exp(c_{ik})}

where e_i contains self loop and e_{k} \in N_{e_{i}}\cup\{e_{i}\} denotes the neighbors of e_i

        ②c_{ij} denotes the attention coefficient between two entities:

\begin{aligned} \text{cij}& =attn(\mathbf{We_{i}},\mathbf{We_{j}}) \\ &=LeakyReLU(\mathbf{p[We_{i}\|We_{j}]}) \end{aligned}

where \mathbf{W} and \mathbf{p} are trainable parameters

(2)Cross-KG Attention(这个是为了修剪,是另一个邻接矩阵)

        ①Pruning operation :

a_{ij}=\max\limits_{r\in R,r'\in R'}\mathbf{1}((e_i,r,e_j)\in T)sim(r,r')

if (e_i,r,e_j)\in T) is true then it will be 1 otherwise 0, sim\left ( \cdot \right ) denotes inner product similarity measure sim(r,r')=\mathbf{r}^{T}\mathbf{r}^{\prime}

2.5.2. Multi-Channel GNN Encoder

       ①Propagation of GNN:

\mathrm{GNN}(A,H,W)=\sigma(\mathbf{AHW})

and they chose \sigma \left ( \cdot \right ) as ReLU

        ②Multi GNN encoder:

\mathrm{MultiGNN}(H^{l};A_{1},\cdots,A_{c})=\mathrm{Pooling}(H_{1}^{l+1},\cdots,H_{c}^{l+1})

where c denotes the number of channels

        ③Updating function:

\mathbf{H}_i^{l+1}=\mathrm{GNN}(A_i,H^l,W_i)

        ④Pooling strategy: mean pooling

2.5.3. Align Model

        ①Embedding two KG to the same vector space and measure the distance to judge the equivalence relation:

\mathcal{L}_{a}=\sum_{(e,e^{'})\in\mathcal{A}_{e}^{s}}\sum_{(e_{-},e_{-}^{'})\in\mathcal{A}_{e}^{s-}}[d(e,e^{'})+\gamma_{1}-d(e_{-},e_{-}^{'})]_{+}+\\\sum_{(r,r^{'})\in\mathcal{A}_{r}^{s}}\sum_{(r_{-},r_{-}^{'})\in\mathcal{A}_{r}^{s-}}[d(r,r^{'})+\gamma_{2}-d(r_{-},r_{-}^{'})]_{+}

where [\cdot]_{+}=max\{0,\cdot\}d(\cdot)=\|\cdot\|_{2}\mathcal{A}_e^{s-} and \mathcal{A}_r^{s-} are negative pairs in the original sets, \gamma _1> 0 and \gamma _2> 0 are margin hyper-parameters separating positive and negative entity and relation alignments

        ②Triplet loss:

\begin{gathered} L_{r} =\sum_{g^{+}\in\mathcal{G}(\mathcal{K})g^{-}\in\mathcal{G}^{-}(\mathcal{K})}[\gamma_{r}-I(g^{+})+I(g^{-})]_{+} \\ +\sum_{t^{+}\in Tt^{-}\in T^{-}}[\gamma_{r}-I(t^{+})+I(t^{-})]_{+} \end{gathered}

        ③I\left ( \cdot \right ) denotes the true value function for triplet t:

I(t)=1-\frac{1}{3\sqrt{d}}\|\mathbf{e}_{i}+\mathbf{r}_{ij}-\mathbf{e}_{j}\|_{2}

then it can be recursively transformed into:

I(t_{s})=I(t_{s1}\wedge t_{s2})=I(t_{s1})\cdot I(t_{s2})\\I(t_{s}\Rightarrow t_{c})=I(t_{s})\cdot I(t_{c})-I(t_{s})+1

where d is the embedding size

        ④The overall loss:

\mathcal{L}=\mathcal{L}_a+\mathcal{L}_r'+\mathcal{L}_r

2.6. Experiment

2.6.1. Experiment Settings

(1)Datasets

        ①Datasets: DBP15K (contains DBPZH-EN(Chinese to English), DBPJA-EN (Japanese to English), and DBPFREN (French to English)) and DWY100K (contains DWY-WD (DBpedia to Wikidata) and DWY-YG (DBpedia to YAGO3))

        ②Statistics of datasets:

        ③Statistics of KG in datasets:

(2)Baselines

        ①MTransE

        ②JAPE

        ③GCN-Align

        ④AlignEA

(3)Training Details

        ①Training ratio: 30% for training and 70% for testing

        ②All the embedding size: 128

        ③All the GNN layers: 2

        ④Optimizer: Adagrad

        ⑤Hyperparameter: \gamma _1=1.0,\gamma _2=1.0,\gamma _r=0.12

        ⑥Grid search to learning rate in {0.1,0.01,0.001}, L2 in {0.01,0.001,0.0001}, dropout rate in {0.1,0.2,0.5}. They finally got 0.001,0.01,0.2 optimal each

2.6.2. Overall Performance

2.6.3. Impact of Two Channels and Rule Transfer

        ①Module ablation:

2.6.4. Impact of Seed Alignments

        ①Ratio of seeds:

2.6.5. Qualitative Analysis

        ①Two examples of how the rule works:

2.7. Related Work

        Introduces some related works

2.8. Conclusions

        They aim to further research word ambiguity

3. 知识补充

3.1. Adagrad Optimizer

(1)补充学习:Deep Learning 最优化方法之AdaGrad - 知乎 (zhihu.com)

4. Reference

Cao, Y. et al. (2019) 'Multi-Channel Graph Neural Network for Entity Alignment', Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, doi: 10.18653/v1/P19-1140

相关文章:

[论文精读]Multi-Channel Graph Neural Network for Entity Alignment

论文网址:Multi-Channel Graph Neural Network for Entity Alignment (aclanthology.org) 论文代码:https:// github.com/thunlp/MuGNN 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&a…...

Study-Oracle-10-ORALCE19C-RAC集群搭建(一)

一、硬件信息及配套软件 1、硬件设置 RAC集群虚拟机:CPU:2C、内存:10G、操作系统:50G Openfile数据存储:200G (10G*2) 2、网络设置 主机名公有地址私有地址VIP共享存储(SAN)rac1192.168.49.13110.10.10.20192.168.49.141192.168.49.130rac2192.168.49.13210.10.10.3…...

1.8 物理层下的传输媒体

欢迎大家订阅【计算机网络】学习专栏,开启你的计算机网络学习之旅! 文章目录 1 导引型传输媒体1.1 双绞线1.2 同轴电缆1.3 光缆 2 非导引型传输媒体2.1 无线电微波通信2.2 多径效应2.3 卫星通信2.4 无线局域网 在数据通信系统中,传输媒体是发…...

指纹定位的原理与应用场景

目录 原理 1. 信号特征收集 2. 定位算法 推导公式 距离估算公式 定位算法公式 使用场景 发展前景 指纹定位是一种基于无线信号强度(如Wi-Fi、RFID、蓝牙等)来实现室内定位的技术。它借助于环境中多个基站的信号特征来推断用户的位置。以下是对指纹定位的详细讲解,包…...

发现一款适合所有用户小巧且强大的编辑器(完美替换Windows记事本)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 编辑器 📒📝 功能亮点📝 适用场景📝 安装使用📝 替换Windows记事本🎈 获取方式 🎈⚓️ 相关链接 ⚓️📖 介绍 📖 今天,发现一款小巧(仅1.26M)且功能强大的编辑器,适用于文本编辑,编程开发等,应该说是适…...

Mysql知识点整理

一、关系型数据库 mysql属于关系型数据库,它具备以下特点 关系模型:数据以二维表格形式存储,易于理解和使用。 数据一致性:通过事务处理机制(ACID特性:原子性、一致性、隔离性、持久性)保证数据…...

ISA-95制造业中企业和控制系统的集成的国际标准-(4)

ISA-95 文章目录 ISA-95ISA-95 & MES一、ISA-95是MES的系统标准二、ISA-95对MOM/MES的活动定义三、MES/MOM如何遵循ISA-95四、MES/MOM功能划分和边界定义 ISA-95 & MES ISA-95 作为企业系统与控制系统集成国际标准,提供了一个通用的框架,有助于…...

Redis篇(Redis原理 - 数据结构)(持续更新迭代)

目录 一、动态字符串 二、intset 三、Dict 1. 简介 2. Dict的扩容 3. Dict的rehash 4. 知识小结 四、ZipList 1. 简介 2. ZipListEntry 3. Encoding编码 五、ZipList的连锁更新问题 六、QuickList 七、SkipList 八、RedisObject 1. 什么是 redisObject 2. Redi…...

Disco公司的DBG工艺详解

知识星球里的学员问:可以详细介绍下DBG工艺吗?DBG工艺的优势在哪里? 什么是DBG工艺? DBG工艺,即Dicing Before Grinding,划片后减薄。Dicing即金刚石刀片划切,Grinding即背面减薄,…...

大学学校用电安全远程监测预警系统

1.概述: 该系统是基于移动互联网、云计算技术,通过物联网传感终端,将办公建筑、学校、医院、工厂、体育场馆、宾馆、福利院等人员密集场所的电气安全数据,实时传输至安全用申管理服务器,为用户提供不间断的数据跟踪&a…...

C++网络编程之IP地址和端口

概述 IP地址和端口共同定义了网络通信中的源和目标。IP地址负责将数据从源设备正确地传输到目标设备,而端口则确保在目标设备上数据被交付到正确的应用或服务。因此,在网络编程中,IP地址和端口是密不可分的两个概念,共同构成了网络…...

陶瓷4D打印有挑战,水凝胶助力新突破,复杂结构轻松造

大家好!今天要和大家聊聊一项超酷的技术突破——《Direct 4D printing of ceramics driven by hydrogel dehydration》发表于《Nature Communications》。我们都知道4D打印很神奇,能让物体随环境变化而改变形状。但陶瓷因为太脆太硬,4D打印一…...

网络安全的详细学习顺序

网络安全的详细学习顺序可以按照由浅入深、逐步递进的原则进行。以下是一个建议的网络安全学习顺序: 1. 基础知识学习 计算机网络基础:理解网络架构、TCP/IP协议栈、OSI七层模型、数据链路层到应用层的工作原理。 操作系统基础:了解Window…...

人工智能与机器学习原理精解【28】

文章目录 随机森林随机森林详解随机森林的详细解释1. 随机森林的基本概念、原理和应用场景、公式和计算2. 随机森林在机器学习、深度学习等领域的重要性3. 实际应用案例及其优势和局限性4. 随机森林在解决实际问题中的价值和意义 随机森林局限性的详细归纳随机森林主要的应用领…...

StarRocks 中如何做到查询超时(QueryTimeout)

背景 本文基于 StarRocks 3.1.7 主要是分析以下两种超时设置的方式: SESSION 级别 SET query_timeout 10;SELECT sleep(20);SQL 级别 select /* SET_VAR(query_timeout10) */ sleep(20); 通过本文的分析大致可以了解到在Starrocks的FE端是如何进行Command的交互以及数据流走…...

Windows 开发工具使用技巧 Visual Studio使用安装和使用技巧 Visual Studio 快捷键

一、Visual Studio配置详解 1. 安装 Visual Studio 安装时,选择你所需要的组件和工作负载。Visual Studio 提供多种工作负载,例如: ASP.NET 和 Web 开发:用于 Web 应用的开发。 桌面开发(使用 .NET 或 C&#xff09…...

计算机网络-系分(5)

目录 计算机网络 DNS解析 DHCP动态主机配置协议 网络规划与设计 层次化网络设计 网络冗余设计 综合布线系统 1. 双栈技术 2. 隧道技术 3. 协议转换技术 其他网络技术 DAS(Direct Attached Storage,直连存储) NAS(Net…...

React Native使用高德地图

在React Native项目中使用高德地图,主要涉及到几个关键步骤:安装高德地图相关的React Native模块、配置项目、申请高德地图API Key、以及在实际组件中使用高德地图功能。以下是一个详细的步骤指南: 一、安装高德地图React Native模块 首先&…...

排序算法的理解

排序算法借鉴了数学里面的不等式的思想 计算机不能直接继承不等式的传递性特征,这个时候才用递归调用去人为的分成不同的部分。或者说,一部分已经大致排序好的数放在一边,另外一边再排。 这是由于计算机只能两两比较数字才会出现的情况。它…...

Yocto - 使用Yocto开发嵌入式Linux系统_04 使用Toaster来创建一个image

Using Toaster to Bake an Image 既然我们已经知道了如何在 Poky 中使用 BitBake 构建图像,那么接下来我们就来学习如何使用 Toaster 构建图像。我们将重点介绍 Toaster 最直接的使用方法,并介绍它的其他功能,让你了解它的能力。 Now that we…...

【C#生态园】后端服务与网络库:选择适合你游戏开发的利器

网络通信不再难题:六种常用游戏开发网络库详解 前言 随着网络游戏行业的蓬勃发展,对于实时多玩家游戏服务和网络通信库的需求也日益增长。在游戏开发中,选择合适的后端服务和网络库可以极大地影响游戏的性能、稳定性和用户体验。本文将介绍…...

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30 目录 文章目录 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30目录1. Proof Automation with Large Language Models概览:论文研究背景:技术挑战:如何破局…...

【漏洞复现】JeecgBoot 积木报表 queryFieldBySql sql注入漏洞

》》》产品描述《《《 积木报表,是一款免费的企业级Web报表工具,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! 》》》漏洞描述《《《 JeecgBoot 积木报表 queryFieldBySq| 接口存在一个 SQL 注入漏洞&…...

Qt6 中相对于 Qt5 的新增特性及亮点

Qt 是一个领先的跨平台应用开发框架,涵盖了桌面、移动、嵌入式等多个平台。随着 Qt6 的发布,Qt 框架经历了重大升级和变革,带来了大量新特性和架构上的改进,使开发者可以更高效地开发现代化应用程序。本文将重点讨论 Qt6 相对于 Q…...

超轻巧modbus调试助手使用说明

一、使用说明 1.1 数据格式 和其他的modbus采集工具一样,本组件也支持各种数据格式,其实就是高字节低字节的顺序。一般是2字节表示一个数据,后面又有4字节表示一个数据,目前好像还有8字节表示一个数据的设备。不同厂家的设备对应…...

Percona Monitoring and Management

Percona Monitoring and Management (PMM)是一款开源的专用于管理和监控MySQL、MongoDB、PostgreSQL...

WarehouseController

目录 1、 WarehouseController 1.1、 //仓库信息设置 1.2、 /// 查询 1.3、 /// 删除 WarehouseController using QXQPS.Models; using QXQPS.Vo; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mv…...

基于 STM32 单片机的温室物理无害生长系统

摘要 : 本系统主要由六大部分组成,分别为 STM32单片机控制模块、温湿度检测模块、风扇、臭氧消毒、温室补光灯、水利灌溉通道等基本设施。单片机可以通过 MOS 管这类的电力电子器件来实现对某些大功率设施的控制如温室内风扇通风系统、温室内定时补光、根据土壤温湿检测来进行…...

新版pycharm如何导入自定义环境

我们新的版本的pycharm的ui更改了,但是我不会导入新的环境了 我们先点击右上角的add interpreter 然后点击添加本地编译器 先导入这个bat文件 再点击load 我们就可以选择我们需要的环境了...

一文彻底搞懂多模态 - 多模态理解+视觉大模型+多模态检索

文章目录 技术交流多模态理解一、图像描述1. 基于编码器-解码器的方法2. 基于注意力机制的方法3. 基于生成对抗网络的方法 二、视频描述三、视觉问答 视觉大模型一、通用图像理解模型二、通用图像生成模型 多模态检索一、单模态检索二、多模态检索三、跨模态检索 最近这一两周看…...