当前位置: 首页 > news >正文

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6

目录

  • 第四门课 卷积神经网络(Convolutional Neural Networks)
    • 第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)
      • 2.5 网络中的网络以及 1×1 卷积(Network in Network and 1×1 convolutions)
      • 2.6 谷歌 Inception 网络简介(Inception network motivation)

第四门课 卷积神经网络(Convolutional Neural Networks)

第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)

2.5 网络中的网络以及 1×1 卷积(Network in Network and 1×1 convolutions)

在架构内容设计方面,其中一个比较有帮助的想法是使用 1×1 卷积。也许你会好奇,1×1 的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看。

过滤器为 1×1,这里是数字 2,输入一张 6×6×1 的图片,然后对它做卷积,起过滤器大小为 1×1×1,结果相当于把这个图片乘以数字 2,所以前三个单元格分别是 2、4、6 等等。用 1×1 的过滤器进行卷积,似乎用处不大,只是对输入矩阵乘以某个数字。但这仅仅是对于6×6×1 的一个通道图片来说,1×1 卷积效果不佳。

在这里插入图片描述
如果是一张 6×6×32 的图片,那么使用 1×1 过滤器进行卷积效果更好。具体来说,1×1 卷积所实现的功能是遍历这 36 个单元格,计算左图中 32 个数字和过滤器中 32 个数字的元素积之和,然后应用 ReLU 非线性函数。

在这里插入图片描述
我们以其中一个单元为例,它是这个输入层上的某个切片,用这 36 个数字乘以这个输入层上 1×1 切片,得到一个实数,像这样把它画在输出中。

这个 1×1×32 过滤器中的 32 个数字可以这样理解,一个神经元的输入是 32 个数字(输入图片中左下角位置 32 个通道中的数字),即相同高度和宽度上某一切片上的 32 个数字,这 32 个数字具有不同通道,乘以 32 个权重(将过滤器中的 32 个数理解为权重),然后应
用 ReLU 非线性函数,在这里输出相应的结果。

在这里插入图片描述
一般来说,如果过滤器不止一个,而是多个,就好像有多个输入单元,其输入内容为一个切片上所有数字,输出结果是 6×6 过滤器数量。

在这里插入图片描述
所以 1×1 卷积可以从根本上理解为对这 32 个不同的位置都应用一个全连接层,全连接层的作用是输入 32 个数字(过滤器数量标记为𝑛𝐶
[𝑙+1],在这 36 个单元上重复此过程),输出结果是 6×6×#filters(过滤器数量),以便在输入层上实施一个非平凡(non-trivial)计算。

在这里插入图片描述
这种方法通常称为 1×1 卷积,有时也被称为 Network in Network,在林敏、陈强和颜水成的论文中有详细描述。虽然论文中关于架构的详细内容并没有得到广泛应用,但是 1×1 卷积或 Network in Network 这种理念却很有影响力,很多神经网络架构都受到它的影响,包括下节课要讲的 Inception 网络。

举个 1×1 卷积的例子,相信对大家有所帮助,这是它的一个应用。

假设这是一个 28×28×192 的输入层,你可以使用池化层压缩它的高度和宽度,这个过程我们很清楚。但如果通道数量很大,该如何把它压缩为 28×28×32 维度的层呢?你可以用 32个大小为 1×1 的过滤器,严格来讲每个过滤器大小都是 1×1×192 维,因为过滤器中通道数量
必须与输入层中通道的数量保持一致。但是你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(𝑛𝑐)的方法,对于池化层我只是压缩了这些层的高度和宽度。

在这里插入图片描述
在之后我们看到在某些网络中 1×1 卷积是如何压缩通道数量并减少计算的。当然如果你想保持通道数 192 不变,这也是可行的,1×1 卷积只是添加了非线性函数,当然也可以让网络学习更复杂的函数,比如,我们再添加一层,其输入为 28×28×192,输出为 28×28×192。

在这里插入图片描述
1×1 卷积层就是这样实现了一些重要功能的(doing something pretty non-trivial),它给神经网络添加了一个非线性函数,从而减少或保持输入层中的通道数量不变,当然如果你愿意,也可以增加通道数量。后面你会发现这对构建 Inception 网络很有帮助,我们放在下节课讲。

这节课我们演示了如何根据自己的意愿通过 1×1 卷积的简单操作来压缩或保持输入层中的通道数量,甚至是增加通道数量。下节课,我们再讲讲 1×1 卷积是如何帮助我们构建Inception 网络的,下节课见。

2.6 谷歌 Inception 网络简介(Inception network motivation)

构建卷积层时,你要决定过滤器的大小究竟是 1×1(原来是 1×3,猜测为口误),3×3 还是 5×5,或者要不要添加池化层。而 Inception 网络的作用就是代替你来决定,虽然网络架构因此变得更加复杂,但网络表现却非常好,我们来了解一下其中的原理。

例如,这是你 28×28×192 维度的输入层,Inception 网络或 Inception 层的作用就是代替人工来确定卷积层中的过滤器类型,或者确定是否需要创建卷积层或池化层,我们演示一下。

在这里插入图片描述
如果使用 1×1 卷积,输出结果会是 28×28×#(某个值),假设输出为 28×28×64,并且这里只有一个层。

在这里插入图片描述
如果使用 3×3 的过滤器,那么输出是 28×28×128。然后我们把第二个值堆积到第一个值上,为了匹配维度,我们应用 same 卷积,输出维度依然是 28×28,和输入维度相同,即高度和宽度相同。

在这里插入图片描述
或许你会说,我希望提升网络的表现,用 5×5 过滤器或许会更好,我们不妨试一下,输出变成 28×28×32,我们再次使用 same 卷积,保持维度不变。

在这里插入图片描述
或许你不想要卷积层,那就用池化操作,得到一些不同的输出结果,我们把它也堆积起来,这里的池化输出是 28×28×32。为了匹配所有维度,我们需要对最大池化使用 padding,它是一种特殊的池化形式,因为如果输入的高度和宽度为 28×28,则输出的相应维度也是28×28。然后再进行池化,padding 不变,步幅为 1。

这个操作非常有意思,但我们要继续学习后面的内容,一会再实现这个池化过程。

在这里插入图片描述

有了这样的 Inception 模块,你就可以输入某个量,因为它累加了所有数字,这里的最终输出为 32+32+128+64=256。Inception 模块的输入为 28×28×192,输出为 28×28×256。这就是 Inception 网络的核心内容,提出者包括 Christian Szegedy、刘伟、贾扬清、Pierre Sermanet、Scott Reed、Dragomir Anguelov、Dumitru Erhan、Vincent Vanhoucke 和 Andrew Rabinovich。基本思想是 Inception 网络不需要人为决定使用哪个过滤器或者是否需要池化,而是由网络自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合。

不难发现,我所描述的 Inception 层有一个问题,就是计算成本,下一张幻灯片,我们就来计算这个 5×5 过滤器在该模块中的计算成本。

在这里插入图片描述

我们把重点集中在前一张幻灯片中的 5×5 的过滤器,这是一个 28×28×192 的输入块,执行一个 5×5 卷积,它有 32 个过滤器,输出为 28×28×32。前一张幻灯片中,我用一个紫色的细长块表示,这里我用一个看起来更普通的蓝色块表示。我们来计算这个 28×28×32 输出的
计算成本,它有 32 个过滤器,因为输出有 32 个通道,每个过滤器大小为 5×5×192,输出大小为 28×28×32,所以你要计算 28×28×32 个数字。对于输出中的每个数字来说,你都需要执行 5×5×192 次乘法运算,所以乘法运算的总次数为每个输出值所需要执行的乘法运算次数
(5×5×192)乘以输出值个数(28×28×32),把这些数相乘结果等于 1.2 亿(120422400)。即使在现在,用计算机执行 1.2 亿次乘法运算,成本也是相当高的。下一张幻灯片会介绍 1×1卷积的应用,也就是我们上节课所学的。为了降低计算成本,我们用计算成本除以因子 10,结果它从 1.2 亿减小到原来的十分之一。请记住 120 这个数字,一会还要和下一页看到的数字做对比。

在这里插入图片描述
这里还有另外一种架构,其输入为 28×28×192,输出为 28×28×32。其结果是这样的,对于输入层,使用 1×1 卷积把输入值从 192 个通道减少到 16 个通道。然后对这个较小层运行5×5 卷积,得到最终输出。请注意,输入和输出的维度依然相同,输入是 28×28×192,输出
是 28×28×32,和上一页的相同。但我们要做的就是把左边这个大的输入层压缩成这个较小的的中间层,它只有 16 个通道,而不是 192 个。

在这里插入图片描述
有时候这被称为瓶颈层,瓶颈通常是某个对象最小的部分,假如你有这样一个玻璃瓶,这是瓶塞位置,瓶颈就是这个瓶子最小的部分。

在这里插入图片描述
同理,瓶颈层也是网络中最小的部分,我们先缩小网络表示,然后再扩大它。

接下来我们看看这个计算成本,应用 1×1 卷积,过滤器个数为 16,每个过滤器大小为1×1×192,这两个维度相匹配(输入通道数与过滤器通道数),28×28×16 这个层的计算成本是,输出 28×28×192 中每个元素都做 192 次乘法,用 1×1×192 来表示,相乘结果约等于 240万。

在这里插入图片描述
那第二个卷积层呢?240 万只是第一个卷积层的计算成本,第二个卷积层的计算成本又是多少呢?这是它的输出,28×28×32,对每个输出值应用一个 5×5×16 维度的过滤器,计算结果为 1000 万。

所以所需要乘法运算的总次数是这两层的计算成本之和,也就是 1204 万,与上一张幻灯片中的值做比较,计算成本从 1.2 亿下降到了原来的十分之一,即 1204 万。所需要的加法运算与乘法运算的次数近似相等,所以我只统计了乘法运算的次数。

总结一下,如果你在构建神经网络层的时候,不想决定池化层是使用 1×1,3×3 还是 5×5的过滤器,那么 Inception 模块就是最好的选择。我们可以应用各种类型的过滤器,只需要把输出连接起来。之后我们讲到计算成本问题,我们学习了如何通过使用 1×1 卷积来构建瓶
颈层,从而大大降低计算成本。

你可能会问,仅仅大幅缩小表示层规模会不会影响神经网络的性能?事实证明,只要合理构建瓶颈层,你既可以显著缩小表示层规模,又不会降低网络性能,从而节省了计算。这就是 Inception 模块的主要思想,我们在这总结一下。下节课,我们将演示一个完整的 Inception 网络。

相关文章:

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)2.5 网络中的网络以及 11 卷积(Network in Network and 11 convoluti…...

C# 解决Excel边框样式无法复制问题及实现格式刷功能

目录 问题现象 范例运行环境 解决方案 剪贴板加特殊粘贴 自定义样式 直接赋值 完美方案 小结 问题现象 在运行数据表数据导出到 EXCEL 数据输出时遇到了一个问题&#xff0c;开发者设计了单行细线下边框的输出模板&#xff0c;如下图设计&#xff1a; 其中 <%syst…...

前端组件化开发

假设这个页面是vue开发的&#xff0c;如果一整个页面都是编写在一个vue文件里面&#xff0c;后期不好维护&#xff0c;会特别的庞大&#xff0c;那么如何这个时候需要进行组件化开发。组件化开发后必然会带来一个问题需要进行组件之间的通信。组要是父子组件之间通信&#xff0…...

异步操作实现线程池

文章目录 futureasyncpromisepackage task C11线程池实现 future 在C11标准库中&#xff0c;提供了一个future的模板类&#xff0c;它表示的是一个异步操作的结果&#xff0c;当在多线程编程中使用异步任务的时候&#xff0c;使用这个类可以帮助在需要的时候获取到对应的数据处…...

长期提供APX515/B原装二手APX525/B音频分析仪

Audio Precision APx515 是一款针对生产测试而优化的高性能音频分析仪。它因其速度、性能、自动化和易用性而成为一流的仪器。它具有卓越的性能&#xff0c;具有 –106 dB 的典型 THDN、1M 点 FFT 和 192k 数字 I/O&#xff0c;以及所有 APx 系列音频分析仪的一键式自动化和易用…...

【数据库差异研究】update与delete使用表别名的研究

目录 ⚛️总结 ☪️1 Update ♋1.1 测试用例UPDATE users as a SET a.age 111 WHERE a.name Alice; ♏1.2 测试用例UPDATE users as a SET a.age 111 WHERE name Alice; ♐1.3 测试用例UPDATE users as a SET age 111 WHERE a.name Alice; ♑1.4 测试用例UPDATE us…...

idea远程连接docker

idea远程连接docker docker、ubuntu、linux、远程连接、IntelliJ idea注意&#xff01;本文中开启docker远程连接的方法只能在确定环境安全的内网中使用&#xff0c;不可在公网服务器设置&#xff0c;有极大安全风险&#xff01; 注意&#xff01;本文中开启docker远程连接的…...

Docker 安装 ClickHouse 教程

Docker 安装 ClickHouse 教程 创建目录 首先&#xff0c;创建必要的目录用于存放 ClickHouse 的配置、数据和日志文件。 mkdir -p /home/clickhouse/conf mkdir -p /home/clickhouse/data mkdir -p /home/clickhouse/log chmod -R 777 /home/clickhouse/conf chmod -R 777 /…...

过渡到内存安全语言:挑战和注意事项

开放源代码安全基金会 ( OpenSSF )总经理 Omkhar Arasaratnam 讨论了内存安全编程语言的演变及其为应对 C 和 C 等语言的局限性而出现的现象。 内存安全问题已存在五十多年&#xff0c;它要求程序员从内存管理任务中抽离出来。 Java、Rust、Python 和 JavaScript 等现代语言通…...

在Pycharm中安装Cv2

安装OpenCV&#xff1a; 在Terminal中&#xff0c;输入以下pip命令来安装OpenCV&#xff1a; pip install opencv-python pip install opencv-contrib-python 如果下载速度较慢&#xff0c;可以考虑使用国内的pip镜像源&#xff0c;如清华大学源&#xff1a; pip install openc…...

减少重复的请求之promise缓存池(构造器版) —— 缓存promise,多次promise等待并返回第一个promise的结果

减少重复的请求之promise缓存池 —— 缓存promise&#xff0c;多次promise等待并返回第一个promise的结果 背景简介 当一个业务组件初始化调用了接口&#xff0c;统一个页面多吃使用同一个组件&#xff0c;将会请求大量重复的接口 如果将promise当作一个普通的对象&#xff0…...

cdq+bitset处理高维偏序

高维偏序 CDQ分治 假设处理的区间为 [ l , r ] [l,r] [l,r] &#xff0c;CDQ分治的过程&#xff1a; 如果 l ≥ r l\geq r l≥r &#xff0c;返回。设区间中点为 m i d mid mid &#xff0c;递归处理 [ l , m i d ] [l,mid] [l,mid] 和 [ m i d 1 , r ] [mid1,r] [mid…...

敏捷开发和传统开发,你更适合哪种?

时间&#xff1a;2024年 10月 03日 作者&#xff1a;小蒋聊技术 邮箱&#xff1a;wei_wei10163.com 微信&#xff1a;wei_wei10 音频&#xff1a;喜马拉雅 大家好&#xff0c;欢迎来到“小蒋聊技术”&#xff0c;我是小蒋&#xff01;今天我们来聊聊两个开发模式的“对决”…...

python之with

with上下文管理是什么呢&#xff1f; 一般都是使用系统提供的一些with语句&#xff0c;列如我要去读取一些数据进行分析&#xff0c;就可以使用with open去读取某些数据&#xff0c;或者我要把一些图片给他保存到某些地方&#xff0c;可以用with给他写入。 上下午管理器with是…...

vue3 升级实战笔记

最近要将公司项目的移动端进行 vue3 的升级工作&#xff0c;就顺便记录下升级过程。 项目迁移的思路 我的想法是最小改动原则。 从 vue2.x 升级到 vue3&#xff0c;且使用 vue3 的 选项式 API。构建工具要从 vue-cli&#xff08;webpack&#xff09;升级到 vite。路由需要升级到…...

利用函数模块化代码实操 ← Python

【知识点】 ● 模块化可以使代码易于维护和调试&#xff0c;并且提高代码的重用性。 ● 函数可以用来减少冗余的代码并提高代码的可重用性。函数也可以用来模块化代码并提高程序的质量。 ● 在 Python 中&#xff0c;可以将函数的定义放在一个被称为模块的文件中,这种文件的后缀…...

Java高效编程(12):重写toString方法

解锁Python编程的无限可能&#xff1a;《奇妙的Python》带你漫游代码世界 尽管 Object 类提供了 toString 方法的默认实现&#xff0c;但它返回的字符串通常不是类的使用者想要看到的。默认返回的字符串格式是类名加上“”符号和哈希码的十六进制表示&#xff0c;例如 PhoneNu…...

谷歌给到的185个使用生成式AI的案例

很多公司从利用AI回答问题&#xff0c;进而使用AI进行预测&#xff0c;向使用生成式AI Agent转变。AI Agent的独特之处在于它们可以采取行动以实现特定目标&#xff0c;比如引导购物者找到合适的鞋子&#xff0c;帮助员工寻找合适的健康福利&#xff0c;或在护理人员交接班期间…...

程序员如何通过专业与软技能提升核心竞争力

一、引言  随着AIGC的兴起&#xff0c;AI辅助编程工具如chatgpt、midjourney、claude等接二连三地涌现&#xff0c;编程领域的变革正逐步深化。面对这一变革&#xff0c;程序员们对于未来工作的前景有着种种不同的担忧和期待。他们担心AI可能取代部分编程工作&#xff0c;同时…...

基于YOLOv8的智能植物监测机器人

摘要:针对传统的植物病害检测方法依赖专家的经验,耗时耗力,并且准确性受限于个人的水平等问题。文中提出无线通信模块采用HTTP协议来传输数据图片,采用SoC核心处理器实现了便携化,采用对射式红外避障传感器实现自动避障功能。以YOLOv8算法为控制核心,并添加注意力机制以提…...

2024年OpenAI DevDay发布实时 API、提示缓存等新功能

就在几天前&#xff0c;一些重要人物如前 CTO Mira Murati 离开了 OpenAI。因此&#xff0c;看到 Sam Altman 在 DevDay 上登台&#xff0c;讨论开发者的新产品&#xff0c;感觉有点奇怪。 随着公司内部的这些变化&#xff0c;你不禁会想&#xff1a;我们还应该信任他吗&#…...

Raspberry Pi3B+之安装bookworm+Rpanion系统

Raspberry Pi3B之安装bookwormRpanion系统 1. 源由2. 系统安装3. 系统安装3.1 烧录系统3.2 设备接线3.3 配置无线3.4 更新系统3.5 安装git3.6 克隆Rpanion3.7 安装Rpanion 4. 系统管理5. 附录问题1&#xff1a;error: externally-managed-environment问题2&#xff1a;bookworm…...

无人机专业除理论外,飞手执照、组装、调试实操技术详解

无人机专业的学习除了丰富的理论知识外&#xff0c;飞手执照的获取、无人机的组装与调试等实操技术也是至关重要的。以下是对这些方面的详细解析&#xff1a; 一、无人机飞手执照 1. 必要性 法规要求&#xff1a;根据《民用无人驾驶航空器系统驾驶员管理暂行规定》等相关法规…...

【网路通信基础与实践番外二】TCP协议的流量控制和拥塞控制以及二者区别和例题

TCP协议是端对端的协议&#xff0c;因此在数据进行传输的过程受发送方&#xff0c;数据通道&#xff0c;接收方三方状态的影响。我们用水龙头来比喻数据发送方&#xff0c;水管来比喻数据通道&#xff0c;水桶来表示数据接收方。 图(a)表示水桶太小&#xff0c;来不及接受注入…...

SpringBoot3+Vue3开发后台管理系统脚手架

后台管理系统脚手架 介绍 在快速迭代的软件开发世界里&#xff0c;时间就是生产力&#xff0c;效率决定成败。对于构建复杂而庞大的后台系统而言&#xff0c;一个高效、可定制的后台脚手架&#xff08;Backend Scaffold&#xff09;无疑是开发者的得力助手。 脚手架 后台脚…...

OpenFeign微服务部署

一.开启nacos 和redis 1.查看nacos和redis是否启动 docker ps2.查看是否安装nacos和redis docker ps -a3.启动nacos和redis docker start nacos docker start redis-6379 docker ps 二.使用SpringSession共享例子 这里的两个例子在我的一个博客有创建过程&#xff0c…...

【C语言】数组(下)

【C语言】数组&#xff08;下&#xff09; 6、二维数组的创建6.1二维数组的概念6.2二维数组的创建 7、二维数组的初始化7.1不完全初始化7.2完全初始化7.3按照行初始化7.4初始化时可以省略行&#xff0c;但是不能省略列 8、二维数组的使用8.1 二维数组的下标8.2二维数组的输入和…...

cGANs with Projection Discriminator

基于映射鉴别器的CGAN 模型中&#xff0c;判别器&#xff08;Discriminator&#xff09;不是通过将条件信息简单地与特征向量拼接&#xff08;concatenate&#xff09;来使用条件信息&#xff0c;而是采用一种基于投影的方式&#xff0c;这种方式更加尊重条件信息在底层概率模…...

mysql学习教程,从入门到精通,SQL HAVING 子句(32)

1、SQL HAVING 子句 当然&#xff01;HAVING 子句在 SQL 中用于对分组后的结果进行过滤。它通常与 GROUP BY 子句一起使用&#xff0c;以便对聚合函数&#xff08;如 SUM(), COUNT(), AVG(), MAX(), MIN() 等&#xff09;的结果进行条件筛选。 以下是一个示例&#xff0c;假设…...

JavaScript while循环语句

While语句包括一个循环条件和一段代码块&#xff0c;只要条件为真&#xff0c;就不断循环执行代码块。 while(条件){语句;} var i0;while(i<100){console.log(i);i1;} 注意&#xff1a;所有的for循环都可以改写为while循环...

和什么人合作做游戏视频网站/上海外贸网站seo

摘要&#xff1a;在本文中&#xff0c;我们提出了一种新的神经网络模型&#xff0c;称为RNN编码器 - 解码器&#xff0c;由两个递归神经网络&#xff08;RNN&#xff09;组成。一个RNN编码器将特征编码为一个固定长度的向量&#xff0c;另一个解码器解码这个向量为另一个符号序…...

做化妆品等的网站/aso优化渠道

在Java中&#xff0c;如果需要设定代码执行的最长时间&#xff0c;即超时&#xff0c;可以用Java线程池ExecutorService类配合Future接口来实现。 Future接口是Java标准API的一部分&#xff0c;在java.util.concurrent包中。Future接口是Java线程Future模式的实现&#xff0c;可…...

光谷做网站推广/万网官网

前言 磁盘可以说是计算机系统最慢的硬件之一&#xff0c;读写速度相差内存 10 倍以上&#xff0c;所以针对优化磁盘的技术非常的多&#xff0c;比如零拷贝、直接 I/O、异步 I/O 等等&#xff0c;这些优化的目的就是为了提高系统的吞吐量&#xff0c;另外操作系统内核中的磁盘高…...

网站建设规划书目录/住房和城乡建设部

求500万以内的所有亲和数如果两个不同的数a和b&#xff0c;a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数。例如220和284&#xff0c;1184和1210&#xff0c;2620和2924。编程实现。 想一想这个问题&#xff0c;首先你要弄清楚&#xff0c;什么是亲和数&…...

购物网站需求分析报告/网络公司优化关键词

在用浩辰CAD软件绘制图纸的过程中&#xff0c;想要将修改过CAD文字格式保存到样式中方便下次再用的时候直接调用文字样式就可以了&#xff0c;那么该如何操作呢&#xff1f;接下来给大家分享一下在浩辰CAD软件中将CAD文字样式保存下来方便以后调用的方法吧&#xff01;一、将文…...

找人做网站需要准备什么材料/厨师培训

我正在运行一个基于Python的CGI脚本&#xff0c;在浏览器中打印“dig”命令的输出有困难。我使用Idle运行同一个脚本&#xff0c;它可以工作。在脚本如下&#xff1a;#!/usr/bin/python3.5## Modulesimport cgiimport subprocessimport re## Create HTML pageform cgi.FieldSt…...