当前位置: 首页 > news >正文

OpenCV C++霍夫圆查找

OpenCV 中的霍夫圆检测基于 霍夫变换 (Hough Transform),它是一种从边缘图像中识别几何形状的算法。霍夫圆检测是专门用于检测图像中的圆形形状的。它通过将图像中的每个像素映射到可能的圆参数空间,来确定哪些像素符合圆形状。

1. 霍夫变换的原理

霍夫变换的基本思想是将图像空间中的点映射到一个参数空间,在这个参数空间中可以检测特定的几何形状(如直线、圆等)。对于圆形,霍夫变换的目标是找到符合圆方程的像素。

圆的方程

在二维平面上,圆可以由以下方程描述:

(x-a)^2+(y-b)^2=r^2

其中:

  • (a, b) 是圆心坐标;
  • r 是圆的半径;
  • (x, y) 是圆周上的一个点。

2. 霍夫圆检测的步骤

2.1 边缘检测
  • 在进行霍夫变换之前,首先对图像执行边缘检测,通常使用 Canny 边缘检测器。边缘检测的目的是找到图像中的边缘像素,因为这些像素更有可能属于圆周。
2.2 参数空间的投票
  • 每一个在边缘图像中的像素点 (x, y),它可能属于多个不同圆的边界,因此需要通过以下步骤将其投票映射到参数空间:

    • 将每个边缘像素映射为一组可能的圆心 (a, b),这些圆心位于距离该像素 r 的位置。通过改变半径 r ,该像素 (x, y) 将投票给不同半径下的多个圆心。
    • 对于每个可能的半径 r ,根据圆方程:

a=x-rcos\theta\\ b=y-rsin\theta

                其中 θ 是不同的角度值(从 0 到 360 度),遍历这些角度得到可能的圆心 (a, b)。

  • 每个像素点对不同半径 r 和不同圆心 (a, b) 进行投票,记录这些投票结果。

2.3 累加器
  • 在参数空间 (a, b, r) 中有一个累加器,用来统计哪些 (a, b, r) 的组合收到了最多的投票。最多投票的点表示在边缘图像中最可能的圆心和半径。
  • 累加器的最大值对应的是检测到的圆。
2.4 圆的确定
  • 最后,累加器中投票结果最多的那些 (a, b, r) 组合将被认为是图像中检测到的圆形。霍夫圆检测可以输出这些圆的圆心坐标 (a, b) 以及半径 r。

3. OpenCV 中霍夫圆检测的实现

OpenCV 中使用 HoughCircles() 函数来进行霍夫圆检测,其主要参数包括:

  • image:输入的边缘检测图像(通常是经过边缘检测或灰度化的图像)。
  • method:霍夫变换的检测方法,通常为 HOUGH_GRADIENT,这是经典的霍夫圆检测方法。
  • dp:累加器分辨率的倒数。 dp=1 表示累加器的分辨率与输入图像相同; dp=2 表示累加器分辨率是输入图像的一半。
  • minDist:检测到的圆之间的最小距离,防止检测到多个重叠的圆。
  • param1:用于边缘检测的 Canny 边缘检测的阈值。
  • param2:累加器的阈值,值越高检测到的圆越少,越准确。
  • minRadius  maxRadius:定义圆的最小和最大半径范围。
#include <opencv2/opencv.hpp> 
//#include "quickopencv.h"
#include <iostream>
#include <math.h>
#include <opencv2/imgproc.hpp>
#include <vector>using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat img = imread("path_to_img.jpg");//QuickDemo qd;//qd.hough_circle(img);resize(img, img, Size(img.cols, img.rows), 0, 0, INTER_LINEAR);imshow("img", img);if (img.empty()) {cout << "请确认图像文件名称是否正确" << endl;return -1;}Mat gary;//将图像转换为灰度图cvtColor(img, gary, COLOR_BGR2GRAY);//高斯模糊//GaussianBlur(输入图像,输出图像,高斯核,X轴上的标准差,Y轴上的标准差);GaussianBlur(gary, gary, Size(9, 9), 2, 2);// 转换为二值图/*Mat binary;threshold(img, binary, 100, 255, cv::THRESH_BINARY);imshow("binary", binary);*///检测圆形vector<Vec3f> circles;double dp = 1;		//累加器分辨率与图像分辨率的反比,如果dp=1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器的宽度和高度都是原来的一半。double minDist = 10;	//两个圆心的最小距离double param1 = 40;	//Canny边缘检测的较大阈值double param2 = 40;	//累加器阈值int min_radius = 1;	//圆形半径最小值int max_radius = 50;	//圆形半径最大值HoughCircles(gary, circles, HOUGH_GRADIENT, dp, minDist, param1, param2, min_radius, max_radius);//在图像中标记出圆形for (size_t i = 0; i < circles.size(); i++) {//读取圆心Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));//读取半径int radius = cvRound(circles[i][2]);//绘制圆心circle(img, center, 3, Scalar(0, 255, 0), -1, 8, 0);// 设置圆心坐标的文本std::string centerText = "(" + std::to_string(center.x) + "," + std::to_string(center.y) + ")";// 计算文本框的大小cv::Size textSize = cv::getTextSize(centerText, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, nullptr);// 计算文本框的左下角位置,使其在圆心附近cv::Point textOrg((center.x - textSize.width / 2), (center.y + textSize.height / 2));// 在圆心处绘制文本cv::putText(img, centerText, textOrg, cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(255, 255, 255), 1);//绘制圆circle(img, center, radius, Scala

4. 霍夫圆检测的应用场景

霍夫圆检测广泛应用于多个场景,包括但不限于:

  • 车轮、硬币等圆形物体检测;
  • 医学图像中细胞、眼球、病变区域的圆形检测;
  • 机器视觉中的工业零件检测。

相关文章:

OpenCV C++霍夫圆查找

OpenCV 中的霍夫圆检测基于 霍夫变换 (Hough Transform)&#xff0c;它是一种从边缘图像中识别几何形状的算法。霍夫圆检测是专门用于检测图像中的圆形形状的。它通过将图像中的每个像素映射到可能的圆参数空间&#xff0c;来确定哪些像素符合圆形状。 1. 霍夫变换的原理 霍夫…...

H.264编解码介绍

一、简介 H.264,又称为AVC(Advanced Video Coding),是一种广泛使用的视频压缩标准。它由国际电信联盟(ITU)和国际标准化组织(ISO)联合开发,并于2003年发布。 H.264的发展历史可以追溯到上个世纪90年代。当时,视频压缩技术的主要标准是MPEG-2,但它在压缩率和视频质…...

Java | Leetcode Java题解之第450题删除二叉搜索树中的节点

题目&#xff1a; 题解&#xff1a; class Solution {public TreeNode deleteNode(TreeNode root, int key) {TreeNode cur root, curParent null;while (cur ! null && cur.val ! key) {curParent cur;if (cur.val > key) {cur cur.left;} else {cur cur.rig…...

【CViT】Deepfake Video Detection Using Convolutional Vision Transformer

文章目录 Deepfake Video Detection Using Convolutional Vision Transformerkey points**卷积视觉变压器**FLViT实验总结Deepfake Video Detection Using Convolutional Vision Transformer 会议/期刊:2021 作者: key points 提出了一种用于检测深度伪造的卷积视觉变压器…...

安卓主板_MTK4G/5G音视频记录仪整机及方案定制

音视频记录仪方案&#xff0c;采用联发科MT6877平台八核2* A78 6* A55主频高达2.4GHz, 具有高能低耗特性&#xff0c;搭载Android 12.0智能操作系统&#xff0c;可选4GB32GB/6GB128GB内存&#xff0c;运行流畅。主板集成NFC、双摄像头、防抖以及多种无线数据连接&#xff0c;支…...

Qt 教程全集目录公布(方便查阅)

点击上方"蓝字"关注我们 Qt 安装 以下是常见安装方法和软件获取 Qt4Qt5Qt6版本下载(在线和离线)【网址】...

云计算SLA响应时间的matlab模拟与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 用matlab模拟&#xff0c;一个排队理论。输入一堆包&#xff0c;经过buffer&#xff08;一个或者几个都行&#xff09;传给server&#xff0c;这些包会在buffer里…...

ARTS Week 42

Algorithm 本周的算法题为 2283. 判断一个数的数字计数是否等于数位的值 给你一个下标从 0 开始长度为 n 的字符串 num &#xff0c;它只包含数字。 如果对于 每个 0 < i < n 的下标 i &#xff0c;都满足数位 i 在 num 中出现了 num[i]次&#xff0c;那么请你返回 true …...

10.2学习

1.IOC控制反转 IoC&#xff08;Inverse of Control:控制反转&#xff09;是⼀种设计思想&#xff0c;就是将原本在程序中⼿动创建对象的控制权&#xff0c;交由Spring框架来管理。 IoC 在其他语⾔中也有应⽤&#xff0c;并⾮ Spring 特有。 ​ IoC 容器是 Spring⽤来实现 IoC …...

【数一线性代数】021入门

Index 推荐阅读&#xff1a;https://blog.csdn.net/weixin_60702024/article/details/141729949分析实现总结 推荐阅读&#xff1a;https://blog.csdn.net/weixin_60702024/article/details/141729949 给定二叉树的根节点root&#xff0c;计算其叶节点的个数。 分析实现 类似…...

(k8s)kubernetes中ConfigMap和Secret

转载&#xff1a;ConfigMap 一、ConfigMap介绍 ConfigMap是一种API对象&#xff0c;用来将非机密性的数据保存到键值对中。使用时&#xff0c;Pod可以将其用作环境变量、命令行参数或存储卷中的配置文件。 ConfigMap将你的环境配置信息和容器镜像解耦&#xff0c;便于应用配置…...

stm32四足机器人(标准库)

项目技术要求 PWM波形的学习 参考文章stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)_ttl pwm 驱动激光头区别-CSDN博客 舵机的学习 参考文章 stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)…...

基于Hive和Hadoop的共享单车分析系统

本项目是一个基于大数据技术的共享单车分析系统&#xff0c;旨在为用户提供全面的单车使用信息和深入的出行行为分析。系统采用 Hadoop 平台进行大规模数据存储和处理&#xff0c;利用 MapReduce 进行数据分析和处理&#xff0c;通过 Sqoop 实现数据的导入导出&#xff0c;以 S…...

基于SSM和vue的机票订购管理系统

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSM和vue的机票订购管理系统2拥有两种角色 管理员&#xff1a;用户管理、机票管理、订票管理、公告管理、广告管理、系统管理、添加机票等 用户&#xff1a;登录注册、订票、查看公…...

【rCore OS 开源操作系统】Rust 练习题题解: Enums

【rCore OS 开源操作系统】Rust 练习题题解: Enums 摘要 rCore OS 开源操作系统训练营学习中的代码练习部分。 在此记录下自己学习过程中的产物&#xff0c;以便于日后更有“收获感”。 后续还会继续完成其他章节的练习题题解。 正文 enums1 题目 // enums1.rs // // No hi…...

VPN简述

文章目录 VPNVPN基础VPN类型 VPN VPN隧道安全 VPN基础 背景&#xff1a; 在网络传输中&#xff0c;绝大部分数据内容都是明文传输&#xff0c;存在很多安全隐患&#xff08;窃听、篡改、冒充&#xff09; 总部、分公司、办事处、出差人员、合作单位等需要访问总部网络资源 Vi…...

【Kubernetes】常见面试题汇总(四十九)

目录 110.假设一家公司希望通过采用新技术来优化其工作负载的分配。公司如何有效地实现这种资源分配&#xff1f; 111.考虑一家拼车公司希望通过同时扩展其平台来增加服务器数量。您认为公司将如何处理服务器及其安装&#xff1f; 特别说明&#xff1a; 题目 1-68 属于【…...

常见排序算法以及冒泡排序的基础使用方法

众所周知&#xff0c;冒泡排序是编程中最经典也是最简单的一种排序方法&#xff0c;它是通过重复访问对两个相邻的值进行比较&#xff0c;由于在互换的过程中&#xff0c;最大 (或最小) 的那个值会慢慢的交换到顶部&#xff0c;像汽水一样&#xff0c;故名“冒泡排序”。 let a…...

【网络安全】Cookie与ID未强绑定导致账户接管

未经许可,不得转载。 文章目录 前言正文前言 DigiLocker 是一项在线服务,旨在为公民提供一个安全的数字平台,用于存储和访问重要的文档,如 Aadhaar 卡、PAN 卡和成绩单等。DigiLocker 通过多因素身份验证(MFA)来保护用户账户安全,通常包括 6 位数的安全 PIN 和一次性密…...

Ansible Playbook原理与实践(Principles and Practice of Ansible Playbook)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 本人主要分享计算机核心技…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...