当前位置: 首页 > news >正文

《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)

目录

0. 前言

正文:参数管理

1. 参数访问

1.1 [目标参数]

1.2 [一次性访问所有参数]

1.3 [从嵌套块收集参数]

2. 参数初始化

2.1 [内置初始化]

2.2 [自定义初始化]

2.3 [参数绑定-共享参数]

3. 小结(第2节)

4. 延后初始化 (原书第5章第3节)

4.1 实例化网络

4.2 小结(第3节)


0. 前言

  • 课程全部代码(pytorch版)已上传到附件
  • 本章为原书第5章,共分为5节,本篇是第2-3节:参数管理(每层的权重/偏置)
    • 第1节:《动手学深度学习》笔记2.1——神经网络从基础→进阶 (层和块 - 自定义块)-CSDN博客
    • 第4节:《动手学深度学习》笔记2.3——神经网络从基础→进阶 (自定义层)-CSDN博客
  • 本节的代码位置:chapter_deep-learning-computation/parameters.ipynb
  • 本节的视频链接:
    • 参数管理_哔哩哔哩_bilibili

正文:参数管理

在选择了架构并设置了超参数后,我们就进入了训练阶段。 此时,我们的目标是找到使损失函数最小化的模型参数值。 经过训练后,我们将需要使用这些参数来做出未来的预测。 此外,有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。

之前的介绍中,我们只依靠深度学习框架来完成训练的工作, 而忽略了操作参数的具体细节。 本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

(我们首先看一下具有单隐藏层的多层感知机。)

In [1]:

import torch
from torch import nn
​
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))  # 传入的三个:net[0],net[1],net[2]
X = torch.rand(size=(2, 4))  # 生成随机size=(2, 4)的输入,2指的是batch size
net(X)

Out[1]:

tensor([[-0.0606],[-0.1188]], grad_fn=<AddmmBackward0>)

1. 参数访问

我们从已有模型中访问参数。 当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。 如下所示,我们可以检查第二个全连接层的参数。

In [2]:

print(net[2].state_dict())  # state_dict()拿出net中第3层的参数,有weight和bias(偏置)两个参数
Out[2]:
OrderedDict([('weight', tensor([[-0.1403,  0.0922, -0.1609, -0.1838,  0.3141,  0.0916, -0.1625, -0.0127]])), ('bias', tensor([-0.1967]))])

输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

1.1 [目标参数]

注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

In [3]:

print(type(net[2].bias)) # Parameter指的是可以优化的参数,这是一个type
print(net[2].bias)  # 输出:Parameter containing: tensor([0.1474], requires_grad=True)
print(net[2].bias.data)  # .data访问值本身,.grad来访问梯度
Out[3]:
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.1967], requires_grad=True)
tensor([-0.1967])

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

In [4]:

net[2].weight.grad == None  # .data访问值本身,.grad来访问梯度,咱这里还没做反向计算,还没有梯度
# 对损失函数求导,用反向传播(链式法则),最后使用优化算法(如SGD、Adam等)一次性更新网络的参数

Out[4]:

True

1.2 [一次性访问所有参数]

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

In [5]:

print(*[(name, param.shape) for name, param in net[0].named_parameters()])  # 拿出第0个net的每个参数形状
print(*[(name, param.shape) for name, param in net.named_parameters()])  # net[1]是nn.ReLU(),不显示
# 这里的'weight', torch.Size([8, 4])和前面的nn.Linear(4, 8)相反,在前向传播时pytorch会自动给weight做转置
Out [5]:
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

拓展:关于这个转置的问题,本人尝试询问CSDN代码大模型:C知道,回答得很不错(下方有截图)

c9530a76b605467bb3cc67adbcb638d4.png

之所以将权重矩阵设计为 (out_channels, in_channels) ,把out_channels(实际是列)放前面,是为了方便拿列来进行矩阵乘法运算,符合计算机内存布局的优化,从而提高计算效率

这为我们提供了另一种访问网络参数的方式,如下所示。

In [6]:

net.state_dict()['2.bias'].data # net[2]的bias的值

Out[6]:

tensor([-0.1967])

1.3 [从嵌套块收集参数]

让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

In [7]:

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())  # 4个 block1 拼到了一起return net
​
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

Out[7]:

tensor([[0.4036],[0.4036]], grad_fn=<AddmmBackward0>)

[设计了网络后,我们看看它是如何工作的。]

In [8]:

print(rgnet)
Out[8]:
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

In [9]:

rgnet[0][1][0].bias.data

Out[9]:

tensor([-0.3955,  0.2888, -0.2878, -0.1033, -0.1986, -0.3564,  0.1886,  0.1515])

2. 参数初始化

知道了如何访问参数后,现在我们看看如何正确地初始化参数。 我们在 :numref:sec_numerical_stability中讨论了良好初始化的必要性。 深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

2.1 [内置初始化]

让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

In [10]:

def init_normal(m): # m指每次传入一个Module块,按照正态分布初始化参数if type(m) == nn.Linear:  # 只对全连接层初始化,别的(比如relu)咱就不管啦nn.init.normal_(m.weight, mean=0, std=0.01)  # 权重参数初始化为均值为0,方差为0.01nn.init.zeros_(m.bias)  # 将偏置参数设置为0;末尾的“_”指函数执行后会替换bias,没有返回值net.apply(init_normal)  # apply()相当于“for loop”循环,对net里面所有Module都执行init_normal,遍历一遍
net[0].weight.data[0], net[0].bias.data[0]

Out[10]:

(tensor([ 0.0216, -0.0067,  0.0025,  0.0014]), tensor(0.))

我们还可以将所有参数初始化为给定的常数,比如初始化为1。

In [11]:

def init_constant(m): # 初始化为恒定的constant(常数),算法层面咱不能初始化为常数,这里只是展示一种可能性if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)  # 把权重矩阵每一个元素初始化为1,实际上会导致梯度消失/爆炸等问题nn.init.zeros_(m.bias)  # 这里只是展示一种拓展性net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

Out[11]:

(tensor([1., 1., 1., 1.]), tensor(0.))

我们还可以[对某些块应用不同的初始化方法]。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

In [12]:

def init_xavier(m): # xavier初始化,在数值稳定性那里讲过if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)  # 42这个梗出自《银河系漫游指南》,42是宇宙的答案~
​
net[0].apply(init_xavier)  # 对不同的块,应用不同的初始化函数
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([-0.5535, -0.0212, -0.4946,  0.4913])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2.2 [自定义初始化]

有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数𝑤𝑤定义初始化方法:

fe7b8f957a4b4099b9170b72d60c4296.png

同样,我们实现了一个my_init函数来应用到net

In [13]:

def my_init(m): # 更罕见的初始化,展示一下自定义初始化,作为拓展,实际用不上if type(m) == nn.Linear:print("Init", *[(name, param.shape)  # print一些debug信息for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5
​
net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])
Out[13]:
tensor([[ 0.0000, -8.9999,  9.9201, -9.2975],[-0.0000,  0.0000,  5.7322, -0.0000]], grad_fn=<SliceBackward0>)

注意,我们始终可以直接设置参数。

In [14]:

net[0].weight.data[:] += 1 # 更简单直接的方法,一个一个索引拿出来做替换
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
Out[14]:
tensor([42.0000, -7.9999, 10.9201, -8.2975])

2.3 [参数绑定-共享参数]

(简单应用一下之前所学,后面会用到参数绑定)有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

In [15]:

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),  # 参数绑定的层,参数形状、大小完全一致shared, nn.ReLU(),  # 参数绑定,两个共享层的梯度不是一样的,但它们会累加到同一组参数上nn.Linear(8, 1))  # 在反向传播完成后,使用优化算法(如SGD、Adam等)一次性更新网络的参数
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100  # 修改了其中一个权重
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])  # 另一个也同时修改了,因为指向同一个对象(实例)shared
Out[15]:
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

3. 小结(第2节)

  • 我们有几种方法可以访问、初始化和绑定模型参数。
  • 我们可以使用自定义初始化方法。

4. 延后初始化 (原书第5章第3节)

到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 我们定义了网络架构,但没有指定输入维度。
  • 我们添加层时没有指定前一层的输出维度。
  • 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。

4.1 实例化网络

首先,让我们实例化一个多层感知机。

此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。

接下来让我们将数据通过网络,最终使框架初始化参数。

一旦我们知道若输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。

4.2 小结(第3节)

  • 延后初始化使框架能够自动推断参数形状,使修改模型架构变得容易,避免了一些常见的错误。
  • 我们可以通过模型传递数据,使框架最终初始化参数。

相关文章:

《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)

目录 0. 前言 正文&#xff1a;参数管理 1. 参数访问 1.1 [目标参数] 1.2 [一次性访问所有参数] 1.3 [从嵌套块收集参数] 2. 参数初始化 2.1 [内置初始化] 2.2 [自定义初始化] 2.3 [参数绑定-共享参数] 3. 小结&#xff08;第2节&#xff09; 4. 延后初始化 (原书第…...

双端之Nginx+Php结合PostgreSQL搭建Wordpress

第一台虚拟机:安装 Nginx 更新系统包列表: sudo apt update安装 Nginx及php扩展: sudo apt install nginx php-fpm php-pgsql php-mysqli -y启动 Nginx 服务: sudo systemctl start nginx检查 Nginx 是否正常运行: xdg-open http://localhost注意:终端命令打开网址 …...

Another redis desktop manager使用说明

Another redis desktop manager使用说明 概述界面介绍图示说明连接界面设置界面查看操作日志主界面信息进入redis-cli控制台更多 概述 Another Redis Desktop Manager是一个开源的跨平台 Redis 客户端&#xff0c;提供了简洁易用的图形用户界面&#xff08;GUI&#xff09;&am…...

【git】配置 Git 的换行符处理和安全性||安装 Ruby

配置 Git 的换行符处理和安全性&#xff1a; git config --global core.autocrlf input&#xff1a;这个设置确保在提交代码时&#xff0c;Git 会将 CRLF&#xff08;Windows 的换行符&#xff09;转换为 LF&#xff08;Unix 的换行符&#xff09;&#xff0c;但在检出代码时不…...

VMware ESXi 8.0U3b macOS Unlocker OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布

VMware ESXi 8.0U3b macOS Unlocker & OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布 VMware ESXi 8.0U3b macOS Unlocker & OEM BIOS 2.7 标准版和厂商定制版 ESXi 8.0U3 标准版&#xff0c;Dell (戴尔)、HPE (慧与)、Lenovo (联想)、IEIT SYSTEMS (浪潮信息)、Cisco …...

Unity 代码裁剪(Strip Engine Code)

文章目录 0.IL2CPP 打包运行闪退问题1.什么是代码裁剪2.为什么要使用代码裁剪3.代码裁剪设置与级别4.强制保留代码4.1 使用[Preserve]标签4.2 使用Link.xml文件 5.Strip中遇到的问题及解决方法6.注意事项 0.IL2CPP 打包运行闪退问题 Google Play要求从2019年8月1日起apk必须支…...

单目3d重建DUSt3R 笔记

目录 DUSt3R 三维重建 报错RecursionError: maximum recursion depth exceeded in comparison 报错 numpy.core.multiarray failed to import 报错Numpy is not available 解决 升级版mast3r 速度变慢 修改了参数设置脚本&#xff1a; 测试效果 操作技巧 DUSt3R 三维重…...

AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞

目录 一、简介 二、实验介绍 三、结果展示 四、实操指导 4.1 系统设计 4.2 环境搭建&#xff08;手把手教程&#xff09; 4.3 应用构建 4.4 效果展示 4.5 踩坑避雷总结 五、清理资源 5.1 删除TDSQL-C Serverless 5.2 删除 HAI 算力 六、实验总结归纳 一、简介 本…...

C++之String类(上)

片头 嗨&#xff01;好久不见~ 今天我们来学习C的Sting类&#xff0c;不过&#xff0c;在学习它之前&#xff0c;我们先来对STL库有一个简单的了解。 STL&#xff08;standard template library--标准模板库&#xff09;&#xff0c;是C标准库的重要组成部分&#xff0c;不仅是…...

kubernets基础-ingress详细介绍

文章目录 什么是IngressIngress详细说明Ingress示例 Ingress控制器Ingress控制器的工作原理Ingress控制器的特点常见的Ingress控制器 Ingress关联Ingress控制器一、Ingress资源对象二、Ingress控制器三、Ingress与Ingress控制器的关联方式四、注意事项 多实例部署一、Ingress多…...

jenkins部署Maven和NodeJS项目

在 Java 项目开发中&#xff0c;项目的编译、测试、打包等是比较繁琐的&#xff0c;属于重复劳动的工作&#xff0c;浪费人力和时间成本。以往开发项目时&#xff0c;程序员往往需要花较多的精力在引用 jar 包搭建项目环境上&#xff0c;跨部门甚至跨人员之间的项目结构都有可能…...

在unity资源中发现无效引用

本文主要解决在不打开unity的情况下搜索出无效引用的资源的方法 1. 概述 一般只要遍历一下目录里所有资源,判空一下就好了但有些情况下,不希望打开unity, 尤其希望是在资源整合时,想更快验证资源的合法性, 这对合并提交及出包验证时,都要较大的需求 2. 简单的验证方法 简单来…...

C#知识|基于反射和接口实现抽象工厂设计模式

哈喽&#xff0c;你好啊&#xff0c;我是雷工&#xff01; 01 应用场景 在项目的多数据库支持上、业务的多算法封装、以及各种变化的业务中&#xff1b; 02 抽象工厂组成 抽象工厂包括抽象产品&#xff08;即业务接口&#xff0c;可以通过抽象类或抽象接口设计&#xff09;…...

【分布式微服务云原生】gRPC vs RPC:深入探索远程过程调用的现代与经典

摘要 在分布式系统的世界里&#xff0c;gRPC和RPC是两个耳熟能详的术语&#xff0c;但它们之间有何区别和联系&#xff1f;本文将深入探讨gRPC和RPC的概念、关键特性、以及它们在现代软件开发中的应用。你将了解到gRPC如何作为RPC的一种实现&#xff0c;提供高性能的跨语言远程…...

听说这是MATLAB基础?

MATLAB&#xff08;矩阵实验室&#xff09;是一个强大的高性能计算环境和编程语言&#xff0c;广泛应用于数学计算、算法开发、数据分析、可视化以及模拟等多个领域。以下是MATLAB的一些基础知识&#xff0c;涵盖其功能、语法、基本操作等方面。 1. MATLAB环境 工作区&#xf…...

【CSS/HTML】圣杯布局和双飞翼布局实现两侧宽度固定,中间宽度自适应及其他扩展实现

前沿简介 圣杯布局和双飞翼布局是前端重要的布局方式。两者的功能相同&#xff0c;都是为了实现一个两侧宽度固定&#xff0c;中间宽度自适应的三栏布局。 圣杯布局来源于文章In Search of the Holy Grail,双飞翼布局来源于淘宝UED。 两者的实现方式有差异&#xff0c;但是都…...

数据流和数据流处理技术

一数据流 首先明确数据流概念&#xff1a;数据流是连续不断生成的、快速变化的无界数据序列 数据流类型&#xff1a; 数据流大致可以分为四种类型 1.连续型数据流&#xff1a;不断地产生数据&#xff0c;数据稳定速度输入系统。 2.突发型数据流&#xff1a;在某特定时间或…...

(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案

系列文章目录 文章目录 系列文章目录一、&#xff08;IDEA&#xff09;spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案1.资料 一、&#xff08;IDEA&#xff09;spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案 1.资料…...

解决TikTok无网络连接问题解析

随着社交媒体的快速发展&#xff0c;TikTok已成为全球用户最喜欢的短视频平台之一&#xff0c;吸引了数以亿计的用户。然而&#xff0c;在享受这个平台时&#xff0c;用户经常会遇到无网络连接的问题&#xff0c;这不仅影响观看体验&#xff0c;还可能导致无法上传内容或参与社…...

k8s中,ingress的实现原理,及其架构。

图片来源&#xff1a;自己画的 图片来源&#xff1a;k8s官网 首先&#xff0c;什么是ingress? 是服务还是控制器&#xff1f; 都不精确 ingress是一个api资源 service和deployment也是api资源。 这几个相互协作&#xff0c;组建成一个对外提供服务的架构。 ingress提供的…...

【数据结构强化】应用题打卡

应用题打卡 数组的应用 对称矩阵的压缩存储 注意&#xff1a; 1. 2.上三角的行优先存储及下三角的列优先存储与数组的下表对应 上/下三角矩阵的压缩存储 注意&#xff1a; 上/下三角压缩存储是将0元素统一压缩存储&#xff0c;而不是将对角线元素统一压缩存储 三对角矩阵的…...

解决 MySQL 服务无法启动:failed to restart mysql.service: unit not found

目录 前言1. 问题描述2. 问题分析3. 解决步骤3.1 检查 MySQL 服务文件3.2 备份旧的服务文件3.3 启动 MySQL 服务3.4 验证服务状态 4. 总结结语 前言 在日常使用 MySQL 数据库时&#xff0c;有时候可能会遇到服务无法正常启动的问题。这类问题通常出现在系统更新或者服务配置文…...

Dubbo和Http的调用有什么区别

背景 我们在项目开发中&#xff0c;需要进行调用外部接口时&#xff0c;往往使用Dubbo和Http方式都能实现远程调用。那么他们在使用上&#xff0c;有什么区别呢&#xff1f; 定位不同 一个是分布式环境下的框架&#xff0c;一个是通信协议。 Dubbo&#xff1a;是一种高性能的…...

ARM 架构、cpu

一、ARM的架构 ARM是一种基于精简指令集&#xff08;RISC&#xff09;的处理器架构. 1、ARM芯片特点 ARM芯片的主要特点有以下几点&#xff1a; 精简指令集&#xff1a;ARM芯片使用精简指令集&#xff0c;即每条指令只完成一项简单的操作&#xff0c;从而提高指令的执行效率…...

【React】入门Day03 —— Redux 与 React Router 核心概念及应用实例详解

1. Redux 介绍 // 创建一个简单的Redux store const { createStore } Redux;// reducer函数 function counterReducer(state { count: 0 }, action) {switch (action.type) {case INCREMENT:return { count: state.count 1 };case DECREMENT:return { count: state.count -…...

u2net网络模型训练自己数据集

单分类 下载项目源码 项目源码 准备数据集 将json转为mask json_to_dataset.py import cv2 import json import numpy as np import os import sys import globdef func(file):with open(file, moder, encoding"utf-8") as f:configs json.load(f)shapes configs…...

登录功能开发 P167重点

会话技术&#xff1a; cookie jwt令牌会话技术&#xff1a; jwt生成&#xff1a; Claims&#xff1a;jwt中的第二部分 过滤器&#xff1a; 拦截器&#xff1a; 前端无法识别controller方法&#xff0c;因此存在Dispa什么的...

数据架构图:从数据源到数据消费的全面展示

在这篇文章中&#xff0c;我们将探讨如何通过架构图来展示数据的整个生命周期&#xff0c;从数据源到数据消费。下面是一个使用Mermaid格式的示例数据架构图&#xff0c;展示了数据从源到消费的流动、处理和存储过程。 数据架构图示例 说明 数据源&#xff1a;分为内部数据源&…...

useEffect 与 useLayoutEffect 的区别

useEffect 与 useLayoutEffect 的区别 useEffect和useLayoutEffect是处理副作用的React钩子函数&#xff0c;有以下区别1. 执行时机不同2. 对性能影响不同3. 对渲染的影响不同&#xff1a;4. 使用场景不同 使用建议 useEffect和useLayoutEffect是处理副作用的React钩子函数&…...

OPENCV判断图像中目标物位置及多目标物聚类

文章目录 在最近的项目中&#xff0c;又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中&#xff0c;有时候目标物比较偏&#xff0c;也就是在图像的比较偏的位置&#xff0c;需要通过移动样本&#xff0c;将目标物置于视野正中央&#xff0c;然后再…...

乐都网站建设企业/如何优化培训方式

之前用py-faster-rcnn训练了一个车牌检测模型&#xff0c;然后对检测出来的车牌进行识别&#xff0c;由于我国的车牌第一个一般为汉字&#xff0c;在图像上显示汉字时&#xff0c;出现很多问题&#xff0c;乱码、汉字变方框等&#xff0c;后来在网上看了很多办法才解决&#xf…...

站长工具排名分析/技能培训班有哪些课程

1、安装VirtualBox的【增强功能】2、VirtualBox的【设备】->【共享文件夹】&#xff0c;添加固定分配&#xff0c;如D:\Java, 名称Java3、执行如下命令#cd /mnt#mkdir w_java#mount -t vboxsf java /mnt/w_java这样就把主机下的文件夹挂载到了虚拟的CentOS系统中&#xff0c…...

江苏做网站公司/平台推广策划方案

1.使用router-link 不会让页面刷新&#xff0c;使用a标签会使页面刷新。2.router-link 里面的to"/路由地址" tag""自定义标签" 默认为a标签,linkActiveClass 可以更改默认类名。3.在 HTML5 history 模式下&#xff0c;router-link 会拦截点击事件&…...

南昌智能建站模板/长沙seo关键词排名优化

11月26日&#xff0c;知名软件开发工具厂商JetBrains在北京举办开发者日活动&#xff0c;这是JetBrains亚洲巡讲的最后一站&#xff0c;同时也是该公司第一次在中国举办活动。在活动上&#xff0c;JetBrains首席布道师Hadi Hariri等分享了Kotlin、IntelliJ IDE家族和IntelliJ团…...

单位网站建设公司/微网站建站平台

https://blog.csdn.net/coding_hello/category_5839687.html https://zhuanlan.zhihu.com/p/37518037 Dataset操作 Dataset操作都是在操作列&#xff0c;官方Spark API文档介绍的比较详细。 // Dataset usnchr spark.read().load(paths)&#xff1b;JavaRDD操作 第一步就是创…...

零库存品牌童装杭州网站建设/品牌策划方案

JDK 12于2019年3月20日正式发布&#xff0c;今天集成到IntelliJ IDEA中熟悉一下新特性。目前使用最多的&#xff0c;还是是JDK1.7和JDK1.8&#xff0c;个人目前主要使用JDK1.8。 一、JDK 12介绍 JDK 12是Java SE平台参考实现的最新更新。在Oracle相对较新的六个月发布计划下的…...