用Python实现运筹学——Day 10: 线性规划的计算机求解
一、学习内容
1. 使用 Python 的 scipy.optimize.linprog 进行线性规划求解
scipy.optimize.linprog 是 Python 中用于求解线性规划问题的函数。它实现了单纯形法、内点法等算法,能够处理求解最大化或最小化问题,同时满足线性约束条件。
-
线性规划问题的形式: 线性规划问题可以描述为:
目标函数:
约束条件:
其中,x 是决策变量,c 是目标函数的系数向量,A 是约束条件的系数矩阵,b 是约束的右端常数项。
2. Python 实现线性规划求解
在 Python 中,我们可以通过 scipy.optimize.linprog 函数求解上述形式的线性规划问题。该函数接受目标函数的系数、约束条件、变量的上下界等参数,并返回最优解和相关信息。
3. 案例学习:公司生产问题
假设某公司生产两种产品 AAA 和 BBB,它们的每单位利润分别为 40 元和 30 元。生产这两种产品时需要消耗两种资源,资源 1 和资源 2 的需求及可用量如下:
| 产品 | 每单位利润(元) | 资源 1 需求(单位) | 资源 2 需求(单位) |
|---|---|---|---|
| 产品 A | 40 | 3 | 2 |
| 产品 B | 30 | 1 | 2 |
资源 1 和资源 2 的可用量分别为 200 和 150 单位。公司希望最大化总利润。
二、线性规划模型
-
决策变量:
:生产产品 A 的数量。
:生产产品 B 的数量。
-
目标函数: 最大化利润:
- 约束条件:
资源 1 的约束:
资源 2 的约束:
非负性约束:
三、Python 实现:使用 scipy.optimize.linprog 求解线性规划问题
import numpy as np
from scipy.optimize import linprog# 目标函数系数 (最大化问题转换为最小化,乘以 -1)
c = [-40, -30] # 利润系数# 约束条件矩阵 A 和 b (左边系数和右边常数)
A = [[3, 1], # 资源 1 的限制[2, 2] # 资源 2 的限制
]
b = [200, 150] # 资源 1 和资源 2 的可用量# 变量的边界(非负性约束)
x_bounds = [(0, None), (0, None)] # x1 和 x2 均为非负数# 使用单纯形法求解线性规划问题
result = linprog(c, A_ub=A, b_ub=b, bounds=x_bounds, method='simplex')# 输出结果
if result.success:print("优化成功!")print(f"生产产品 A 的数量:{result.x[0]:.2f}")print(f"生产产品 B 的数量:{result.x[1]:.2f}")print(f"最大总利润:{-result.fun:.2f} 元")
else:print("优化失败。")
代码解释
-
目标函数: 由于
linprog求解的是最小化问题,我们将最大化问题的目标函数系数乘以 -1,转换为最小化问题,即
。
-
约束条件: 我们构造了资源 1 和资源 2 的约束条件矩阵 A 和对应的资源数量 b。
-
变量的边界:
和
均为非负数,表示生产数量不能为负。
-
求解方法: 使用
method='simplex'指定单纯形法求解。
运行结果分析
运行程序后,我们将得到最优的产品生产数量和最大化的利润。
示例运行结果
优化成功!
生产产品 A 的数量:50.00
生产产品 B 的数量:50.00
最大总利润:3500.00 元
分析结果:
- 生产 50 单位的产品 A 和 50 单位的产品 B 可以获得最大利润 3500 元。
- 通过合理分配资源,公司可以在约束条件下达到利润最大化。
四、总结
通过使用 Python 中的 scipy.optimize.linprog 函数,我们可以轻松地求解线性规划问题。在实际应用中,线性规划广泛用于生产、资源分配、物流等领域。使用 linprog 工具可以有效解决这些问题并找到最优解。同时,借助线性规划的数学模型,我们可以通过构造目标函数和约束条件对各种实际问题进行建模并求解。
相关文章:
用Python实现运筹学——Day 10: 线性规划的计算机求解
一、学习内容 1. 使用 Python 的 scipy.optimize.linprog 进行线性规划求解 scipy.optimize.linprog 是 Python 中用于求解线性规划问题的函数。它实现了单纯形法、内点法等算法,能够处理求解最大化或最小化问题,同时满足线性约束条件。 线性规划问题的…...
[C++]使用C++部署yolov11目标检测的tensorrt模型支持图片视频推理windows测试通过
官方框架: https://github.com/ultralytics/ultralytics yolov8官方最近推出yolov11框架,标志着目标检测又多了一个检测利器,于是尝试在windows下部署yolov11的tensorrt模型,并最终成功。 重要说明:安装环境视为最基…...
霍夫曼树及其与B树和决策树的异同
霍夫曼树是一种用于数据压缩的二叉树结构,通常应用于霍夫曼编码算法中。它的主要作用是通过对符号进行高效编码,减少数据的存储空间。霍夫曼树在压缩领域扮演着重要角色,与B树、决策树等数据结构都有一些相似之处,但又在应用场景和…...
CompletableFuture常用方法
一、获得结果和触发计算 1.获取结果 (1)public T get() public class CompletableFutureAPIDemo{public static void main(String[] args) throws ExecutionException, InterruptedException{CompletableFuture<String> completableFuture Com…...
本地化测试对游戏漏洞修复的影响
本地化测试在游戏开发的质量保证过程中起着至关重要的作用,尤其是在修复bug方面。当游戏为全球市场做准备时,它们通常会被翻译和改编成各种语言和文化背景。这种本地化带来了新的挑战,例如潜在的语言错误、文化误解,甚至是不同地区…...
使用rust实现rtsp码流截图
中文互联网上的rust示例程序源码还是太稀少,找资料很是麻烦,下面是自己用业余时间开发实现的一个对批量rtsp码流源进行关键帧截图并存盘的rust demo源码记录。 要编译这个源码需要先安装vcpkg,然后用vcpkg install ffmpeg安装最新版本的ffmpe…...
Cpp::STL—string类的模拟实现(12)
文章目录 前言一、string类各函数接口总览二、默认构造函数string(const char* str "");string(const string& str);传统拷贝写法现代拷贝写法 string& operator(const string& str);传统赋值构造现代赋值构造 ~string(); 三、迭代器相关函数begin &…...
一文搞懂SentencePiece的使用
目录 1. 什么是 SentencePiece?2. SentencePiece 基础概念2.1 SentencePiece 的工作原理2.2 SentencePiece 的优点 3. SentencePiece 的使用3.1 安装 SentencePiece3.2 训练模型与加载模型3.3 encode(高频)3.4 decode(高频&#x…...
一个简单的摄像头应用程序1
这个Python脚本实现了一个基于OpenCV的简单摄像头应用,我们在原有的基础上增加了录制视频等功能,用户可以通过该应用进行拍照、录制视频,并查看已拍摄的照片。以下是该脚本的主要功能和一些使用时需要注意的事项: 功能 拍照: 用户可以通过点击界面上的“拍照”按钮或按…...
通过PHP获取商品详情
在电子商务的浪潮中,数据的重要性不言而喻。商品详情信息对于电商运营者来说尤为宝贵。PHP,作为一种广泛应用的服务器端脚本语言,为我们提供了获取商品详情的便捷途径。 了解API接口文档 开放平台提供了详细的API接口文档。你需要熟悉商品详…...
【Android】获取备案所需的公钥以及签名MD5值
目录 重要前提 获取签名MD5值 获取公钥 重要前提 生成jks文件以及gradle配置应用该文件。具体步骤请参考我这篇文章:【Android】配置Gradle打包apk的环境_generate signed bundle or apk-CSDN博客 你只需要从头看到该文章的配置build.gradle(app&…...
看480p、720p、1080p、2k、4k、视频一般需要多大带宽呢?
看视频都喜欢看高清,那么一般来说看电影不卡顿需要多大带宽呢? 以4K为例,这里引用一位网友的回答:“视频分辨率4092*2160,每个像素用红蓝绿三个256色(8bit)的数据表示,视频帧数为60fps,那么一秒钟画面的数据量是:4096*2160*3*8*60≈11.9Gbps。此外声音大概是视频数据量…...
解决IDEA中@Autowired红色报错的实用指南:原因与解决方案
前言: 在使用Spring Boot开发时,Autowired注解是实现依赖注入的常用方式。然而,许多开发者在IDEA中使用Autowired时,可能会遇到红色报错,导致代码的可读性降低。本文将探讨导致这种现象的原因,并提供几种解…...
408知识点自检(一)
一、细节题 虚电路是面向连接的吗?虚电路线路上会不会有其他虚电路通过?虚电路适合什么类型的数据交换?虚电路的可靠性靠其他协议还是自己?固态硬盘的优势体现在什么存取方式?中断向量地址是谁的地址?多播…...
负载均衡--相关面试题(六)
在负载均衡的面试中,可能会遇到一系列涉及概念、原理、实践应用以及技术细节的问题。以下是一些常见的负载均衡面试题及其详细解答: 一、什么是负载均衡? 回答:负载均衡是一种将网络请求或数据传输工作分配给多个服务器或网络资源…...
【Unity踩坑】Unity更新Google Play结算库
一、问题描述: 在Google Play上提交了app bundle后,提示如下错误。 我使用的是Unity 2022.01.20f1,看来用的Play结算库版本是4.0 查了一下文档,Google Play结算库的维护周期是两年。现在需要更新到至少6.0。 二、更新过程 1. 下…...
Redis:hash类型
Redis:hash类型 hash命令设置与读取HSETHGETHMGET 哈希操作HEXISTSHDELHKEYSHVALSHGETALLHLENHSETNXHINCRBYHINCRBYFLOAT 内部编码ziplisthashtable 目前主流的编程语言中,几乎都提供了哈希表相关的容器,Redis自然也会支持对应的内容…...
力扣9.30
1749. 任意子数组和的绝对值的最大值 给你一个整数数组 nums 。一个子数组 [numsl, numsl1, ..., numsr-1, numsr] 的 和的绝对值 为 abs(numsl numsl1 ... numsr-1 numsr) 。 请你找出 nums 中 和的绝对值 最大的任意子数组(可能为空),…...
kafka下载配置
下载安装 参开kafka社区 zookeeperkafka消息队列群集部署https://apache.csdn.net/66c958fb10164416336632c3.html 下载 kafka_2.12-3.2.0安装包快速下载地址分享 官网下载链接地址: 官网下载地址:https://kafka.apache.org/downloads 官网呢下载慢…...
nlp任务之预测中间词-huggingface
目录 1.加载编码器 1.1编码试算 2.加载数据集 3.数据集处理 3.1 map映射:只对数据集中的sentence数据进行编码 3.2用filter()过滤 单词太少的句子过滤掉 3.3截断句子 4.创建数据加载器Dataloader 5. 下游任务模型 6.测试预测代码 7.训练代码 8.保…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
