当前位置: 首页 > news >正文

基于yolov8调用本地摄像头并将读取的信息传入jsonl中

最近在做水面垃圾识别的智能船 用到了yolov8进行目标检测 修改并添加了SEAttention注意力机制

详情见其他大神

【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用_yolov8添加se-CSDN博客

并且修改传统的iou方法改为添加了wise-iou的方法 ,对于小目标,传统的IoU可能不够敏感,因为即使是微小的偏移也可能导致IoU显著下降。Wise-IoU通过加权可以更公平地对待小目标,从而提高小目标检测的性能 ,这对于我们船体的摄像头 查找远处或较小漂浮物起到了一定作用。

好了,回归正题。我们写了一个脚本 用于收集识别后的标框和参数信息 将这些信息存储进一个jsonl文件中 启用两个线程 在jetson nano b01 4gb的板子上进行运行 。

目的: 通过存储这些信息我们可以用于计算 例如计算到屏幕正下方的距离 可以做些简单的计算和路径规划等问题 后续我们还在完成这份工作 

话不多说,我们先上传代码。 该代码结合gpt添加了许多注释 (真的很多,组里有人看不懂代码 所以写的时候只能加很多注释并让gpt规范格式)不过这样也方便大家的阅读和使用

以下是源码环节:

import cv2
from ultralytics import YOLO
import datetime
import json
import threading
import queue
import time  # 导入 time 模块# 队列用于线程间通信
data_queue = queue.Queue()# 事件用于通知其他线程停止
stop_event = threading.Event()# 将 id_counter 定义为全局变量
id_counter = 0# 修改 detection_data 的定义,去掉 timestamp 并添加 id 作为第一个元素
def process_frames(model, cap):"""对摄像头捕捉到的视频帧进行处理,使用YOLO模型进行目标检测,并将结果放入队列中。Args:model (YOLO): YOLO目标检测模型实例。cap (cv2.VideoCapture): 摄像头视频流对象。Returns:None"""global id_counter  # 确保在函数内部使用的是全局变量id_counterwhile not stop_event.is_set():  # 当停止事件未设置时,循环继续ret, frame = cap.read()  # 从摄像头读取一帧if not ret:  # 如果无法读取帧(摄像头可能已断开)print("无法接收帧(可能是摄像头断开)")break  # 跳出循环results = model(frame)  # 使用模型处理帧for result in results:  # 遍历模型检测结果boxes = result.boxes  # 获取检测到的边界框for box in boxes:  # 遍历每个边界框x1, y1, x2, y2 = map(int, box.xyxy[0])  # 提取边界框坐标confidence = round(float(box.conf[0]), 3)  # 提取置信度cls = int(box.cls[0])  # 提取类别索引label = model.names[cls]  # 获取类别名称detection_data = {  # 构造检测数据字典"id": id_counter,"x1": x1,"y1": y1,"x2": x2,"y2": y2,"confidence": confidence,"label": label}data_queue.put(detection_data)  # 将检测数据放入队列# 绘制检测框和标签cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)  # 绘制绿色矩形框cv2.putText(frame, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 255, 0), 2)  # 在框上方绘制标签和置信度id_counter += 1  # 在每次处理后增加 ID 计数器now = datetime.datetime.now()  # 获取当前时间time_str = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间字符串cv2.putText(frame, time_str, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)  # 在画面上显示时间cv2.imshow('Camera', frame)  # 显示画面if cv2.waitKey(1) & 0xFF == ord('q'):  # 如果用户按下 'q' 键stop_event.set()  # 设置停止事件break  # 跳出循环# 添加 sleep 以控制帧率time.sleep(1)  # 每隔1秒处理一帧cap.release()  # 释放摄像头资源cv2.destroyAllWindows()  # 关闭所有OpenCV窗口# write_to_file 函数不需要再处理 detection_data 中的 timestamp
def write_to_file(output_file, max_lines=1000):line_count = 0  # 记录写入的行数with open(output_file, 'w') as f:  # 初始以写模式打开文件,清空文件内容while True:try:detection_data = data_queue.get(timeout=1)  # 尝试从队列获取数据f.write(json.dumps(detection_data) + '\n')line_count += 1if line_count >= max_lines:print(f"已达到{max_lines}行数据,清空文件并继续运行。")f.close()  # 关闭当前文件句柄f = open(output_file, 'w')  # 重新打开文件,清空内容line_count = 0  # 重置行数计数器except queue.Empty:  # 如果队列为空,则等待下一次尝试if stop_event.is_set():  # 检查是否需要退出returncontinuedef run_yolov8_detection(model_path="./yolov8n.pt", camera_id=0, output_file="ultralytics-main/detector.jsonl"):"""运行 YOLOv8 目标检测算法。Args:model_path (str, optional): YOLOv8 模型文件路径,默认为 "./yolov8n.pt"。camera_id (int, optional): 摄像头设备 ID,默认为 0。output_file (str, optional): 输出文件路径,默认为 "ultralytics-main/detector.jsonl"。Returns:None"""# 初始化YOLO模型model = YOLO(model_path)# 打开摄像头cap = cv2.VideoCapture(camera_id)# 检查摄像头是否成功打开if not cap.isOpened():print("无法打开摄像头")return# 创建并启动两个线程# 第一个线程用于处理摄像头捕捉到的帧processing_thread = threading.Thread(target=process_frames, args=(model, cap))# 第二个线程用于将处理后的帧写入文件writing_thread = threading.Thread(target=write_to_file, args=(output_file,))# 启动两个线程processing_thread.start()writing_thread.start()# 等待两个线程完成# 等待处理帧的线程完成processing_thread.join()# 等待写入文件的线程完成writing_thread.join()# 调用函数
run_yolov8_detection()

如有问题请及时私信,欢迎大家指正!!!

相关文章:

基于yolov8调用本地摄像头并将读取的信息传入jsonl中

最近在做水面垃圾识别的智能船 用到了yolov8进行目标检测 修改并添加了SEAttention注意力机制 详情见其他大神 【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用_yolov8添加se-CSDN博客 并且修改传统的iou方法改为添加了wise-io…...

Linux中的进程间通信之管道

管道 管道是Unix中最古老的进程间通信的形式。 我们把从一个进程连接到另一个进程的一个数据流称为一个“管道” 匿名管道 #include <unistd.h> 功能:创建一无名管道 原型 int pipe(int fd[2]); 参数 fd&#xff1a;文件描述符数组,其中fd[0]表示读端, fd[1]表示写端 …...

【Vue】vue2项目打包后部署刷新404,配置publicPath ./ 不生效问题

Vue Router mode&#xff0c;为 history 无效&#xff0c;建议使用默认值 hash&#xff1b;...

【PyTorch】生成对抗网络

生成对抗网络是什么 概念 Generative Adversarial Nets&#xff0c;简称GAN GAN&#xff1a;生成对抗网络 —— 一种可以生成特定分布数据的模型 《Generative Adversarial Nets》 Ian J Goodfellow-2014 GAN网络结构 Recent Progress on Generative Adversarial Networks …...

Vue3轻松实现前端打印功能

文章目录 1.前言2.安装配置2.1 下载安装2.2 main.js 全局配置3.综合案例3.1 设置打印区域3.2 绑定打印事件3.3 完整代码4.避坑4.1 打印表格无边框4.2 单选框复选框打印不选中4.3 去除页脚页眉4.4 打印內容不自动换行1.前言 vue3 前端打印功能主要通过插件来实现。 市面上常用的…...

SHA-1 是一种不可逆的、固定长度的哈希函数,在 Git 等场景用于生成唯一的标识符来管理对象和数据完整性

SHA-1 (Secure Hash Algorithm 1) 是一种加密哈希函数&#xff0c;它能将任意大小的数据&#xff08;如文件、消息&#xff09;转换为一个固定长度的 160 位&#xff08;20 字节&#xff09;哈希值。这种哈希值通常以 40 个十六进制字符的形式表示&#xff0c;是数据的“指纹”…...

Activiti7 工作流引擎学习

目录 一. 什么是 Activiti 工作流引擎 二. Activiti 流程创建步骤 三. Activiti 数据库表含义 四. BPMN 建模语言 五. Activiti 使用步骤 六. 流程定义与流程实例 一. 什么是 Activiti 工作流引擎 Activiti 是一个开源的工作流引擎&#xff0c;用于业务流程管理&#xf…...

pytorch使用LSTM模型进行股票预测

文章目录 tushare获取股票数据数据预处理构建模型训练模型测试模型tushare获取股票数据 提取上证指数代码为603912的股票:佳力图,时间跨度为2014-01-01到今天十年的数据。 import tushare as ts pro = ts.pro_api()#准备训练集数据df = ts.pro_bar(ts_code=603912.SH, star…...

掌握 C# 异常处理机制

在任何编程语言中&#xff0c;处理错误和异常都是不可避免的。C# 提供了强大的异常处理机制&#xff0c;可以帮助开发者优雅地捕获和处理程序中的异常&#xff0c;确保程序的健壮性和可靠性。本文将带你了解 C# 中的异常类、try-catch 语句、自定义异常以及 finally 块的使用。…...

【Redis】Redis Cluster 简单介绍

Redis Cluster 是 Redis 3.0 提供的一种分布式解决方案, 允许数据在多个节点之间分散存储, 从而实现高可用性和可扩展性。 特点: 分片: Redis Cluster 将数据分散到多个节点, 通过哈希槽 (hash slots) 机制将键映射到不同的节点上。总共有 16384 个哈希槽, 每个节点负责一部分…...

【EXCEL数据处理】000010 案列 EXCEL文本型和常规型转换。使用的软件是微软的Excel操作的。处理数据的目的是让数据更直观的显示出来,方便查看。

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【EXCEL数据处理】000010 案列 EXCEL单元格格式。EXCEL文本型和常规型转…...

golang grpc进阶

protobuf 官方文档 基本数据类型 .proto TypeNotesGo Typedoublefloat64floatfloat32int32使用变长编码&#xff0c;对于负值的效率很低&#xff0c;如果你的域有可能有负值&#xff0c;请使用sint64替代int32uint32使用变长编码uint32uint64使用变长编码uint64sint32使用变长…...

Java JUC(三) AQS与同步工具详解

Java JUC&#xff08;三&#xff09; AQS与同步工具详解 一. ReentrantLock 概述 ReentrantLock 是 java.util.concurrent.locks 包下的一个同步工具类&#xff0c;它实现了 Lock 接口&#xff0c;提供了一种相比synchronized关键字更灵活的锁机制。ReentrantLock 是一种独占…...

使用rust写一个Web服务器——async-std版本

文章目录 实现异步代码并发地处理连接使用多线程提升性能 使用rust实现一个异步运行时是async-std的单线程Web服务器。 仓库地址&#xff1a; 1037827920/web-server: 使用rust编写的简单web服务器 (github.com) 在之前的单线程版本的Web服务器代码上进行修改&#xff0c;具体…...

C语言复习概要(一)

本文 C语言入门详解&#xff1a;从基础概念到分支与循环1. C语言常见概念1.1 程序的基本结构1.2 变量作用域和存储类1.3 输入输出1.4 编译与运行 2. C语言中的数据类型和变量2.1 基本数据类型2.2 变量的声明与初始化2.3 常量与枚举 3. C语言的分支结构3.1 if语句3.2 if-else语句…...

二、kafka生产与消费全流程

一、使用java代码生产、消费消息 1、生产者 package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.pr…...

本地搭建OnlyOffice在线文档编辑器结合内网穿透实现远程协作

文章目录 前言1. 安装Docker2. 本地安装部署ONLYOFFICE3. 安装cpolar内网穿透4. 固定OnlyOffice公网地址 前言 本篇文章讲解如何使用Docker在本地Linux服务器上安装ONLYOFFICE&#xff0c;并结合cpolar内网穿透实现公网访问本地部署的文档编辑器与远程协作。 Community Editi…...

ScrapeGraphAI 大模型增强的网络爬虫

在数据驱动的动态领域&#xff0c;从在线资源中提取有价值的见解至关重要。从市场分析到学术研究&#xff0c;对特定数据的需求推动了对强大的网络抓取工具的需求。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线…...

PDF转换为TIF,JPG的一个简易工具(含下载链接)

目录 0.前言&#xff1a; 1.工具目录 2.工具功能&#xff08;效果&#xff09;&#xff0c;如何运行 效果 PDF转换为JPG&#xff08;带颜色&#xff09; PDF转换为TIF&#xff08;LZW形式压缩&#xff0c;可以显示子的深浅&#xff09; PDF转换为TIF&#xff08;CCITT形…...

Wireshark 解析QQ、微信的通信协议|TCP|UDP

写在前面 QQ&#xff0c;微信这样的聊天软件。我们一般称为im&#xff0c;Instant Messaging&#xff0c;即时通讯系统。那大家会不会有疑问&#xff0c;自己聊天内容会不会被黑客或者不法分子知道&#xff1f;这种体量的im是基于tcp还是udp呢&#xff1f;这篇文章我们就来探索…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...