二、kafka生产与消费全流程
一、使用java代码生产、消费消息
1、生产者
package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;/*** kafka生产者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class HelloKafkaProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {// 构建消息producerRecord = new ProducerRecord<>("topic_1", "student", "allwe");// 发送消息producer.send(producerRecord);System.out.println("消息发送成功");} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}
2、消费者
package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** kafka生产者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class HelloKafkaConsumer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.deserializer", StringDeserializer.class);properties.put("value.deserializer", StringDeserializer.class);properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");// new一个消费者consumerKafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);try {// 订阅哪些主题,可以多个,推荐订阅一个主题consumer.subscribe(Collections.singleton("topic_1"));// 死循环里面实现监听while (true) {// 每间隔1s,取一次消息,可能取到多条消息// 设置一秒的超时时间ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : records) {System.out.println("key:" + record.key() + ",value:" + record.value());}}} finally {// 释放连接consumer.close();}}
}
3、踩坑
如果连接的不是本机的kafka,需要在目标机器的kafka配置文件中配置真实的ip地址,如果使用默认的配置或者配置为localhost:9092,kafka.clients会将目标机器的ip解析为127.0.0.1,导致连接不上kafka。
二、生产者
1、序列化器
在上面的demo中,由于消息的key和value都是String类型的,就可以使用kafka.client提供的String序列化器,如果想要发送其他自定义类型的对象,可以手动编写一个序列化器和反序列化器,实现Serializer接口,将对象和byte数组互相转换即可。
需要注意的是,生产者使用的自定义序列化器必须和消费者使用的反序列化器对应,否则无法正确解析消息。
那么什么情况下需要使用自定义序列化器呢?
-- 需要兼容一些其他协议。
2、分区器
发送的消息被分配到哪个分区中?分区是如何选择的?假设上面的demo中,主题topic_1有4个分区,分别发送4次消息,处理分区的逻辑是怎样的?
这里需要先配置kafka在创建新的主题时,默认的分区数量,我这里配置为了4。
1)指定分区器
可以选择在创建生产者时,给生产者配置相关的分区器,指定具体分区算法。kafka.client提供了一些分区器,或者自己实现一个分区器。
// 设置分区规则
Properties properties = new Properties();
// 1、默认分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, DefaultPartitioner.class);
// 2、统一粘性分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, UniformStickyPartitioner.class);
// 3、自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);
自定义分区器:
package com.allwe.client.partitioner;import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;import java.util.List;
import java.util.Map;/*** 自定义分区器 - 以value值分区*/
public class MyPartitioner implements Partitioner {@Overridepublic int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {List<PartitionInfo> partitionInfoList = cluster.partitionsForTopic(topic);// 以value值的byte数组处理后再和分区数取模,决定放在哪个分区上return Utils.toPositive(Utils.murmur2(valueBytes)) % partitionInfoList.size();}@Overridepublic void close() {}@Overridepublic void configure(Map<String, ?> map) {}
}
2)指定分区
也可以选择在构建消息时指定分区,此时的分区优先级最高,不会被其他分区器影响。
# 创建消息时指定分区为 0
ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");
3、生产者发送消息的回调
package com.allwe.client.partitioner;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.concurrent.Future;/*** kafka生产者配置 - 自定义分区器 & 发送消息回调** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class PartitionerProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// 设置自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {// 构建指定分区的消息,此时指定的分区不会变// producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");for (int i = 0; i < 10; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_2", "student", "allwe" + i);// 发送消息Future<RecordMetadata> future = producer.send(producerRecord);// 解析回调元数据RecordMetadata recordMetadata = future.get();System.out.println(i + ",offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());}} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}
打印结果:
4、异步解析生产者发送消息的回调
package com.allwe.client.callBack;import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;/*** kafka生产者配置 - 异步解析发送消息回调** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class AsynPartitionerProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// 设置自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {for (int i = 0; i < 10; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_3", "student", "allwe" + i);// 发送消息, 设置异步回调解析器producer.send(producerRecord, new CallBackImpl());}System.out.println("发送完成,topic_4");} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}
package com.allwe.client.callBack;import cn.hutool.core.util.ObjectUtil;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.RecordMetadata;/*** 异步发送消息回调解析器*/
public class CallBackImpl implements Callback {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if (ObjectUtil.isNull(e)) {// 解析回调元数据System.out.println("offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());} else {e.printStackTrace();}}
}
5、生产者缓冲
1)为什么kafka在客户端发送消息的时候需要做一个缓冲?
① 减少IO的开销(单个 -> 批次),需要修改配置文件。
② 减少GC(核心)。
2)如何配置缓冲?
producer.properties配置文件中修改下面两个参数:
消息的大小:batch.size = 默认16384(16K)
暂存的时间:linger.ms = 默认0ms
上面两个条件只要达到一个,就会发送消息,所以在默认配置下,生产一条消息就立即发送。
3)减少GC的原理
producer.properties配置文件的参数:
缓冲池大小:buffer.memory = 默认32M
kafka客户端使用了缓冲池,默认大小32M,当有一条新的消息进入缓冲池,达到了任何一个条件后就发送。发送后不用立即回收内存,而是初始化一下缓冲池即可,减少了GC的次数。
简单说就是利用池化技术减少了对象的创建 -> 减少内存分配次数 -> 减少了垃圾回收次数。
4)使用缓冲池的风险
当缓存的消息超出缓冲池的大小,kafka就会抛出OOM异常。
如果写入消息太快,但是上一次send方法没有执行完,就会导致上一次缓存的消息不能删除,这一次进来的消息又太多,最终写满了缓冲池,触发OOM异常。
解决办法就是适当调整buffer.memory参数和batch.size参数,增加缓冲池大小,缩小每一批次的大小。
三、Kafka Broker
消息从生产者发送出去后,就进入了broker中。在kafka broker中,每一个分区就是一个文件。
四、消费者
1、消费者群组
在消费的过程中,一般情况下使用群组消费,设置group_id_config。
核心:kafka群组消费的负载均衡建立在分区级别。
1)单个群组场景
一个分区只能由一个消费者消费。
在kafka执行过程中,支持动态添加或者减少消费者。
2)多个群组场景
群组之间的消费是互不干扰的,比如群组A的消费者和群组B的消费者可以同时消费同一个分区的消息。
2、Demo记录
写一个生产者,我为了测试顺畅写了一个无限循环的。只启动一次,输入参数即可实现批量发送消息。
package com.allwe.client.singleGroup;import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.Scanner;/*** kafka生产者配置 - 无限生产消息** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class Producer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);Scanner scanner = new Scanner(System.in);;try {int count;while (true) {System.out.println("==================输入消息条数===================");String nextLine = scanner.nextLine();if ("exit".equals(nextLine)) {break;}count = Integer.parseInt(nextLine);ProducerRecord<String, String> producerRecord;try {for (int i = 0; i < count; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_5", "topic_5", "allwe" + i);producer.send(producerRecord);}} catch (Exception e) {e.printStackTrace();}System.out.println("发送完成,topic_5");}} catch (Exception e) {throw new RuntimeException(e);} finally {// 释放连接producer.close();scanner.close();}}
}

写一个消费者base类,由于测试消费者需要启动很多类,我这里为了方便写了一个baseConsumer类,调用时new这个类的对象即可调用消费方法。
package com.allwe.client.singleGroup;import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** kafka 消费者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
@Data
public class SingleGroupBaseConsumer {private String groupIdConfig;private String topicName;private KafkaConsumer<String, String> consumer;public SingleGroupBaseConsumer(String groupIdConfig, String topicName) {this.groupIdConfig = groupIdConfig;this.topicName = topicName;createConsumer();}private void createConsumer() {// 设置属性Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");properties.put("key.deserializer", StringDeserializer.class);properties.put("value.deserializer", StringDeserializer.class);properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupIdConfig);consumer = new KafkaConsumer<>(properties);}public void poll() {try {consumer.subscribe(Collections.singleton(topicName));while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));int count = 0;for (ConsumerRecord<String, String> record : records) {count = 1;System.out.println("partition:" + record.partition() + ",key:" + record.key() + ",value:" + record.value());}if (count == 1) {// 消费到消息了就打印分隔线System.out.println("===============================");}}} finally {consumer.close();}}
}
1)单个群组场景
群组id:allwe01
package com.allwe.client.singleGroup;import lombok.extern.slf4j.Slf4j;/*** kafka消费者启动器** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class SingleGroupConsumer_1 {public static void main(String[] args) {SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe01", "topic_5");singleGroupBaseConsumer.poll();}
}

我这里只放了一个消费者的消费记录,根据消费者控制台打印的数据,可以看到两条信息:
① 该消费者只能消费分区=1的消息。
② 消费者消费消息时,每次拿到的消息数量不确定。
2)多个群组场景
群组id:allwe02
package com.allwe.client.group;import com.allwe.client.singleGroup.SingleGroupBaseConsumer;
import lombok.extern.slf4j.Slf4j;/*** kafka消费者启动器** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class GroupConsumer_1 {public static void main(String[] args) {SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe02", "topic_5");singleGroupBaseConsumer.poll();}
}

可以看到,这里新加入了一个消费者群组,只有一个消费者,它就消费到了全部分区的消息。
3、ACK确认
消费者在成功消费消息后,会进行ACK确认。提交最后一次消费消息的偏移量,下一次消费就从上次提交的偏移量开始,如果一个新的消费者群组消费一个主题的消息,可以根据不同的配置来指定起始的偏移量。
// 从最早的消息开始消费
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 从已提交的偏移量开始消费 - 默认配置
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");
在kafka内部,有一个名字叫【__consumer_offsets】的主题,保存了消费者对各个主题的消费偏移量。消费者每一次发送的ACK确认,都会更新这个主题中的偏移量数据。
1)自动提交ACK的消费模式
默认的消费模式。
只要拿到了消息,就自动提交ACK确认。
但是有一个风险,就是虽然消费者成功取到了消息,但是在程序处理过程中出现了异常,同时提交了ACK确认,那么这条消息就永远不会被正确地处理。
所以有时候我们需要避免自动提交ACK确认,改成手动提交ACK确认。
2)手动提交ACK确认
取消自动提交
// 取消自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
① 同步提交
// 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行
consumer.commitSync();
立刻进行ACK确认。但是容易造成阻塞,只有等待ACK确认成功后,才会继续执行程序。如果ACK确认不成功,就会一直重试。
② 异步提交
// 异步提交ACK确认
consumer.commitAsync();
异步提交不会阻塞应用程序,提交失败不会重试提交。
③ 组合使用demo
public void poll() {try {consumer.subscribe(Collections.singleton(topicName));while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));int count = 0;for (ConsumerRecord<String, String> record : records) {count = 1;System.out.println("partition:" + record.partition() + ",offset:" + record.offset() +",key:" + record.key() + ",value:" + record.value());}if (count == 1) {// 消费到消息了就打印分隔线System.out.println("===============================");}// 异步提交ACK确认consumer.commitAsync();}} finally {try {// 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行consumer.commitSync();} finally {consumer.close();}}}
3)手动批量提交ACK确认
如果消费者在某一时刻取到的消息数量太多,那么给每一条消息单独提交ACK确认太浪费资源,可以选择批量提交ACK确认。核心思想就是在程序中暂存偏移量,达到设定的阈值后就触发批量提交。
kafka.Consumer提供的异步提交ACK方法支持批量提交。
相关文章:

二、kafka生产与消费全流程
一、使用java代码生产、消费消息 1、生产者 package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.pr…...

本地搭建OnlyOffice在线文档编辑器结合内网穿透实现远程协作
文章目录 前言1. 安装Docker2. 本地安装部署ONLYOFFICE3. 安装cpolar内网穿透4. 固定OnlyOffice公网地址 前言 本篇文章讲解如何使用Docker在本地Linux服务器上安装ONLYOFFICE,并结合cpolar内网穿透实现公网访问本地部署的文档编辑器与远程协作。 Community Editi…...

ScrapeGraphAI 大模型增强的网络爬虫
在数据驱动的动态领域,从在线资源中提取有价值的见解至关重要。从市场分析到学术研究,对特定数据的需求推动了对强大的网络抓取工具的需求。 NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线…...

PDF转换为TIF,JPG的一个简易工具(含下载链接)
目录 0.前言: 1.工具目录 2.工具功能(效果),如何运行 效果 PDF转换为JPG(带颜色) PDF转换为TIF(LZW形式压缩,可以显示子的深浅) PDF转换为TIF(CCITT形…...

Wireshark 解析QQ、微信的通信协议|TCP|UDP
写在前面 QQ,微信这样的聊天软件。我们一般称为im,Instant Messaging,即时通讯系统。那大家会不会有疑问,自己聊天内容会不会被黑客或者不法分子知道?这种体量的im是基于tcp还是udp呢?这篇文章我们就来探索…...
网络编程(5)——模拟伪闭包实现连接的安全回收
六、day6 今天学习如何利用C11模拟伪闭包实现连接的安全回收,之前的异步服务器为echo模式,但存在安全隐患,在极端情况下客户端关闭可能会导致触发写和读回调函数,二者都进入错误处理逻辑,进而造成二次析构。今天学习如…...

C#绘制动态曲线
前言 用于实时显示数据动态曲线,比如:SOC。 //用于绘制动态曲线,可置于定时函数中,定时更新数据曲线 void DrawSocGraph() {double f (double)MainForm.readData[12]; //display datachart1.Series[0].Points.Add(f);if (ch…...
用Python实现运筹学——Day 10: 线性规划的计算机求解
一、学习内容 1. 使用 Python 的 scipy.optimize.linprog 进行线性规划求解 scipy.optimize.linprog 是 Python 中用于求解线性规划问题的函数。它实现了单纯形法、内点法等算法,能够处理求解最大化或最小化问题,同时满足线性约束条件。 线性规划问题的…...

[C++]使用C++部署yolov11目标检测的tensorrt模型支持图片视频推理windows测试通过
官方框架: https://github.com/ultralytics/ultralytics yolov8官方最近推出yolov11框架,标志着目标检测又多了一个检测利器,于是尝试在windows下部署yolov11的tensorrt模型,并最终成功。 重要说明:安装环境视为最基…...
霍夫曼树及其与B树和决策树的异同
霍夫曼树是一种用于数据压缩的二叉树结构,通常应用于霍夫曼编码算法中。它的主要作用是通过对符号进行高效编码,减少数据的存储空间。霍夫曼树在压缩领域扮演着重要角色,与B树、决策树等数据结构都有一些相似之处,但又在应用场景和…...

CompletableFuture常用方法
一、获得结果和触发计算 1.获取结果 (1)public T get() public class CompletableFutureAPIDemo{public static void main(String[] args) throws ExecutionException, InterruptedException{CompletableFuture<String> completableFuture Com…...

本地化测试对游戏漏洞修复的影响
本地化测试在游戏开发的质量保证过程中起着至关重要的作用,尤其是在修复bug方面。当游戏为全球市场做准备时,它们通常会被翻译和改编成各种语言和文化背景。这种本地化带来了新的挑战,例如潜在的语言错误、文化误解,甚至是不同地区…...
使用rust实现rtsp码流截图
中文互联网上的rust示例程序源码还是太稀少,找资料很是麻烦,下面是自己用业余时间开发实现的一个对批量rtsp码流源进行关键帧截图并存盘的rust demo源码记录。 要编译这个源码需要先安装vcpkg,然后用vcpkg install ffmpeg安装最新版本的ffmpe…...

Cpp::STL—string类的模拟实现(12)
文章目录 前言一、string类各函数接口总览二、默认构造函数string(const char* str "");string(const string& str);传统拷贝写法现代拷贝写法 string& operator(const string& str);传统赋值构造现代赋值构造 ~string(); 三、迭代器相关函数begin &…...
一文搞懂SentencePiece的使用
目录 1. 什么是 SentencePiece?2. SentencePiece 基础概念2.1 SentencePiece 的工作原理2.2 SentencePiece 的优点 3. SentencePiece 的使用3.1 安装 SentencePiece3.2 训练模型与加载模型3.3 encode(高频)3.4 decode(高频&#x…...
一个简单的摄像头应用程序1
这个Python脚本实现了一个基于OpenCV的简单摄像头应用,我们在原有的基础上增加了录制视频等功能,用户可以通过该应用进行拍照、录制视频,并查看已拍摄的照片。以下是该脚本的主要功能和一些使用时需要注意的事项: 功能 拍照: 用户可以通过点击界面上的“拍照”按钮或按…...

通过PHP获取商品详情
在电子商务的浪潮中,数据的重要性不言而喻。商品详情信息对于电商运营者来说尤为宝贵。PHP,作为一种广泛应用的服务器端脚本语言,为我们提供了获取商品详情的便捷途径。 了解API接口文档 开放平台提供了详细的API接口文档。你需要熟悉商品详…...

【Android】获取备案所需的公钥以及签名MD5值
目录 重要前提 获取签名MD5值 获取公钥 重要前提 生成jks文件以及gradle配置应用该文件。具体步骤请参考我这篇文章:【Android】配置Gradle打包apk的环境_generate signed bundle or apk-CSDN博客 你只需要从头看到该文章的配置build.gradle(app&…...

看480p、720p、1080p、2k、4k、视频一般需要多大带宽呢?
看视频都喜欢看高清,那么一般来说看电影不卡顿需要多大带宽呢? 以4K为例,这里引用一位网友的回答:“视频分辨率4092*2160,每个像素用红蓝绿三个256色(8bit)的数据表示,视频帧数为60fps,那么一秒钟画面的数据量是:4096*2160*3*8*60≈11.9Gbps。此外声音大概是视频数据量…...
解决IDEA中@Autowired红色报错的实用指南:原因与解决方案
前言: 在使用Spring Boot开发时,Autowired注解是实现依赖注入的常用方式。然而,许多开发者在IDEA中使用Autowired时,可能会遇到红色报错,导致代码的可读性降低。本文将探讨导致这种现象的原因,并提供几种解…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...