当前位置: 首页 > news >正文

使用 classification_report 评估 scikit-learn 中的分类模型

介绍

在机器学习领域,评估分类模型的性能至关重要。scikit-learn 是一个功能强大的 Python 机器学习工具,提供了多种模型评估工具。其中最有用的函数之一是 classification_report,它可以全面概述分类模型的关键指标。在这篇文章中,我们将探讨如何使用该函数有效地评估模型性能。

什么是 classification_report

scikit-learn 的 metrics 模块中的 classification_report 函数生成一份报告,显示每个类别的主要分类指标。这使得理解模型在不同类别中的表现变得更加容易,提供了关于模型如何识别各个类别的深入见解。

指标解释

classification_report 为每个类别输出以下指标:

  • 精度(Precision):正确预测的正类观察值与总预测正类的比率。它是分类器准确性的度量。高精度意味着较低的假阳性率。
  • 召回率(Recall):正确预测的正类观察值与实际正类观察值的比率。它是分类器完备性的度量。
  • F1 值(F1 Score):精度和召回率的加权平均值。该值同时考虑了假阳性和假阴性。特别适用于类分布不均衡的情况。
  • 支持(Support):数据集中实际类别的出现次数。用于评估报告的指标代表性。

使用 classification_report

使用 classification_report 之前,你需要一个已训练的模型和一个测试数据集。以下是实现的分步指南:

  1. 导入必要的模块并加载数据
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report# 加载鸢尾花数据集
iris = datasets.load_iris()
X, y = iris.data, iris.target
  1. 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  1. 训练分类模型
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
  1. 在测试集上进行预测
y_pred = model.predict(X_test)
  1. 生成并打印分类报告
report = classification_report(y_test, y_pred, target_names=iris.target_names)
print(report)

示例输出

输出将显示每个类别的精度、召回率、F1 值和支持,随后是这些指标的平均值:

             precision    recall  f1-score   supportsetosa       1.00      1.00      1.00        19versicolor       1.00      0.90      0.95        10virginica       0.88      1.00      0.93        14avg / total       0.96      0.96      0.96        43

总结

scikit-learn 的 classification_report 提供了对模型性能的详细评估。通过理解这些指标,你可以更好地调整模型,并可能提高其准确性和可靠性。无论你是在处理简单的二分类任务,还是更复杂的多分类问题,classification_report 都能为你提供模型能力和改进方向的宝贵见解。


🍀后记🍀
博客的关键词集中在编程、算法、机器人、人工智能、数学等等,持续高质量输出中。
🌸唠嗑QQ群:兔叽の魔术工房 (942848525)
⭐B站账号:白拾ShiroX(活跃于知识区和动画区)
✨GitHub主页:YangSierCode000(工程文件)
⛳Discord社区:AierLab(人工智能社区)

在这里插入图片描述

相关文章:

使用 classification_report 评估 scikit-learn 中的分类模型

介绍 在机器学习领域,评估分类模型的性能至关重要。scikit-learn 是一个功能强大的 Python 机器学习工具,提供了多种模型评估工具。其中最有用的函数之一是 classification_report,它可以全面概述分类模型的关键指标。在这篇文章中&#xff…...

高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十)高翔书中的细节:参考链接;卫星导航;ESKF

一、 参考链接 我认真查找了好多地方:结果在最后一页。 作者GITHUB链接如下: https://github.com/gaoxiang12/slam_in_autonomous_driving 全书所有参考链接 :如下 1 https://www.sae.org/standards/content/j3016_202104 2 http://www.evinchina.com/articleshow-217.htm…...

【在Python中爬取网页信息并存储】

在Python中爬取网页信息并存储的过程通常涉及几个关键步骤:发送HTTP请求、解析HTML内容、提取所需数据,以及将数据存储到适当的格式中(如文本文件、CSV文件、数据库等)。以下是一个更详细的指南,包括示例代码&#xff…...

ESP32 Bluedroid 篇(1)—— ibeacon 广播

前言 前面我们已经了解了 ESP32 的 BLE 整体架构,现在我们开始实际学习一下Bluedroid 从机篇的广播和扫描。本文将会以 ble_ibeacon demo 为例子进行讲解,需要注意的一点是。ibeacon 分为两个部分,一个是作为广播者,一个是作为观…...

【通配符】粗浅学习

1 背景说明 首先要注意,通配符中的符号和正则表达式中的特殊符号具备不同的匹配意义,例如:*在正则表达式中表示里面是指匹配前面的子表达式0次或者多次,而在通配符领域则是表示代表0个到无穷个任意字符。 此外,要注意…...

Spring MVC 常用注解

目录 基础概念 常用注解介绍 基础概念 1、MVC :代表一种软件架构设计思想,通俗的理解:客户端发送请求到后台服务器的Controller(C),控制器调用Model(M)来处理业务逻辑,处理完成后,返回处理后的数据到Vie…...

水泵模块(5V STM32)

目录 一、介绍 二、传感器原理 1.尺寸介绍 2.继电器控制水泵电路原理图 三、程序设计 main.c文件 bump.h文件 bump.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 水泵模块(bump)通常是指用于液体输送系统的组件,它负责将水或其他流体从低处提…...

需求6:如何写一个后端接口?

这两天一直在对之前做的工作做梳理总结,不过前两天我都是在总结一些bug的问题。尽管有些bug问题我还没写文章,但是,我今天不得不先停下对bug的总结了。因为在国庆之后,我需要自己开发一个IT资产管理的功能,这个功能需要…...

《Linux从小白到高手》理论篇(五):文件权限控制及文件操作相关的命令

本篇介绍Linux文件权限控制及文件操作相关的命令,看完本文,有关Linux文件权限控制及文件操作相关的常用命令你就掌握了99%了。 文件权限 在介绍文件权限之前先来复习下Linux的文件类型,始终记住那句话:Linux系统下,一…...

异常场景分析

优质博文:IT-BLOG-CN 为了防止黑客从前台异常信息,对系统进行攻击。同时,为了提高用户体验,我们都会都抛出的异常进行拦截处理。 一、异常处理类 Java把异常当做是破坏正常流程的一个事件,当事件发生后,…...

Leetcode: 0001-0010题速览

Leetcode: 0001-0010题速览 本文材料来自于LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解 遵从开源协议为知识共享 版权归属-相同方式…...

计算机的错误计算(一百一十二)

摘要 计算机的错误计算(六十三)与(六十八)以及(六十九)分别探讨了大数与 附近数以及 附近数 的余切函数的计算精度问题。本节讨论余切序列(即迭代 )的计算精度问题。 余切序列是指…...

C++基础(7)——STL简介及string类

目录 1.STL简介 1.1什么是 1.2STL的历史版本 1.3STL的六大组件 ​编辑 1.4有用的网址 2.string类 2.1string的多种定义方式 2.2string的插入 2.2.1尾插(push_back) 2.2.2insert插入 2.3拼接(append) 2.4删除 2.4.1尾…...

配置Nginx以支持通过HTTPS回源到CDN

要配置Nginx以支持通过HTTPS回源到CDN,你需要确保Nginx已正确配置SSL,并且能够处理来自CDN的HTTPS请求。以下是一个简化的Nginx配置示例,它配置了SSL并设置了代理服务器参数以回源到CDN: server {listen 443 ssl;server_name you…...

yolov10+strongsort的目标跟踪实现

此次yolov10deepsort不论是准确率还是稳定性,再次超越了之前的yolodeepsort系列。 yolov10介绍——实时端到端物体检测 YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测…...

C# 字符与字符串

本课要点: 1、字符类Char的使用 2、字符串类String的使用 3、可变字符串****StringBuilder 4、常见错误 一 何时用到字符与字符串 问题: 输出C#**课考试最高分:**98.5 输出最高分学生姓名:张三 输出最高分学生性别&#x…...

在Ubuntu 16.04上使用LEMP安装WordPress的方法

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 WordPress 是互联网上最流行的 CMS(内容管理系统)。它允许您在 MySQL 后端和 PHP 处理的基础上轻松设置灵…...

显示器放大后,大漠识图识色坐标偏移解决方法

原因分析: 显示器分辨率较高,DPI设置放大125% or 150% or 200%,游戏打开时也会默认会根据显示器的放大比例自行放大,但是大漠综合管理工具抓图不会放大; 解决方法: 1、大漠综合管理…...

C++容器之list基本使用

目录 前言 一、list的介绍? 二、使用 1.list的构造 2.list iterator的使用 3.list capacity 🥇 empty 🥇size 4.list element access 🥇 front 🥇 back 5.list modifiers 🥇 push_front 🥇 po…...

Redis-哨兵

概念 Redis Sentinel 相关名词解释 注意: 哨兵机制不负责存储数据,只是对其它的redis-server进程起到监控的作用哨兵节点,也会搞一个集合,防止一个挂了 ⼈⼯恢复主节点故障 用户监控: 实际开发中,对于服务器后端开发,监控程序,是很重要的 服务器长期运行,总会有一些意外,…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...