DataFrame增删改数据
目录
准备数据
DataFrame添加列
直接添加列数据
使用insert添加列数据
DataFrame删除行列
准备数据
删除行
删除列
DataFrame数据去重
准备数据
import pandas as pd
df = pd.read_csv("../data/b_LJdata.csv")
df
DataFrame添加列
直接添加列数据
1)获取前5条数据并复制一份
# 获取前5条数据并复制一份
copy_df = df.head().copy()
copy_df
2) 添加列名为 城市 的一列, 值都为 北京
# 添加一列 城市,值为北京
copy_df['城市']='北京'
copy_df

3)添加列名为 区县 的一列, 值分别是 '朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'
# 添加列名为 区县 的一列, 值分别是 '朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'
copy_df['区县']=['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区']
copy_df

4) 添加列名为 新价格 的一列, 值比原价格列的值多1000元
# 添加列名为 新价格 的一列, 值比原价格列的值多1000元
copy_df['新价格'] = copy_df['价格'] +1000
copy_df

使用insert添加列数据
DataFrame的 insert 方法用于在特定位置插入新的列
以下是 df.insert(loc=, column=, value=)的详细解释:
-
1 参数说明
-
loc:
-
这是一个整数,表示要插入新列的位置索引。索引从 0 开始,所以 loc=0 表示在最左边插入新列,loc=1 表示在第二列的位置插入新列,依此类推。
-
-
column:
-
这是一个字符串,表示新列的名称。
-
-
value:
-
可以是一个标量值、列表、数组或其他可迭代对象,它将成为新列的值。如果是标量值,该值将被广播到新列的所有行。如果是可迭代对象,其长度必须与数据框的行数相等。
-
-
使用insert方法会直接修改原始的DataFrame对象。如果需要保留原始数据框的副本,可以先对其进行复制。
确保value参数的值与数据框的行数相匹配,否则会引发错误。
如果多次调用insert方法插入多个新列,每次插入都会移动后续的列,可能会影响性能。在某些情况下,可以考虑一次性构建包含所有列的数据框,而不是逐个插入列。
1) 获取前5条数据并复制一份
# 1 获取前5条数据并复制一份
copy_df = df.head().copy()
copy_df

2) 在区域列后添加列名为 城市 的一列, 值都为北京
# 2 在 区域 列后添加列名为 城市 的一列, 值都为北京
# 2.1 获取指定列的索引 df.columns.get_loc(列名)
area = copy_df.columns.get_loc('区域')
print(area)# 添加新列
copy_df.insert(loc=area+1,column='城市',value='北京')
print(copy_df)
3)在城市列后添加列名为 区县 的一列, 值分别是 '朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'
#%%
# 3 在城市列后添加列名为 区县 的一列, 值分别是 '朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'
# 3.1 获取指定列的索引 df.columns.get_loc(列名)
city = copy_df.columns.get_loc('城市')
print(city)# 添加新列
copy_df.insert(loc=city+1,column='区县',value=['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'])
print(copy_df)

4) 在价格列后添加列名为 新价格 的一列, 值比原价格列的值多1000元
# 4 在价格列后添加列名为 新价格 的一列, 值比原价格列的值多1000元
# 4.1 获取指定列的索引 df.columns.get_loc(列名)
price = df.columns.get_loc('价格')
print(price)# 添加新列
copy_df.insert(loc=price+1,column='新价格',value=copy_df['价格']+1000)
print(copy_df)
DataFrame删除行列
在pandas中,df.drop(labels=, axis=, inplace=)方法用于删除DataFrame中的行或列。
-
labels:-
可以是一个标签(例如列名或行索引)或一个标签列表,表示要删除的行或列。
-
如果是单个标签,将删除对应的一行或一列。如果是列表,则删除多个行或列。
-
-
axis:-
决定是删除行还是列。默认值为 0,表示按行删除。如果设置为 1,则表示按列删除。
-
例如,
axis=0可以用来删除特定的行,而axis=1可以用来删除特定的列。
-
-
inplace:-
这是一个布尔值参数。如果为
True,则直接在原始DataFrame上进行修改,不会返回新的DataFrame。如果为False(默认值),则会返回一个新的DataFrame,原始的DataFrame保持不变。
-
准备数据
import pandas as pd
df = pd.read_csv('../data/b_LJdata.csv')
df

删除行
1)删除一行数据 原df上并没有删除(完整版)
# 删除行:不在原有基础删除,删除一行
copy_df = df.head().copy()
print("===================删除=============================")
new_df = copy_df.drop(labels=[1],axis=0,inplace= False)
print(new_df)
print("====================删除后======================")
print(copy_df)

2) 删除一行数据 原df上并没有删除(简化版)
# 删除行:不在原有基础删除,删除一行
copy_df = df.head().copy()
print("===================删除=============================")
new_df = copy_df.drop(labels=[1])
print(new_df)
print("====================删除后======================")
print(copy_df)

3) 删除多行数据 原df上并没有删除
# 删除多行
copy_df = df.head().copy()
print("===================删除=============================")
new_df = copy_df.drop(labels=[1,2,4],axis=0,inplace= False)
print(new_df)
print("====================删除后======================")
print(copy_df)

4) 删除一行数据 原df上删除
# 在原基础上删除一行
copy_df = df.head().copy()
print("====================删除前======================")
print(copy_df)
print("===================删除=============================")
new_df = copy_df.drop(labels=[1],axis=0,inplace= True)
print(new_df)
print("====================删除后======================")
print(copy_df)

5) 删除多行数据 原df上删除
# 在原基础上删除多行
copy_df = df.head().copy()
print("====================删除前======================")
print(copy_df)
print("===================删除=============================")
new_df = copy_df.drop(labels=[1,1,3],axis=0,inplace= True)
print(new_df)
print("====================删除后======================")
print(copy_df)

删除列
1) 删除一列数据 原df上并没有删除(完整版)
# 不在原基础上,删除一列
copy_df = df.head().copy()
print("==================删除=====================")
new_df = copy_df.drop(labels=['地址'],axis=1,inplace= False)
print(new_df)
print("===============删除后==================")
print(copy_df)

2) 删除多列数据 原df上并没有删除
# 不在原基础上,删除多列
copy_df = df.head().copy()
print("==================删除=====================")
new_df = copy_df.drop(labels=['地址','价格'],axis=1,inplace= False)
print(new_df)
print("===============删除后==================")
print(copy_df)

3) 删除一列数据 原df上删除
# 在原有基础上,删除一行
copy_df = df.head().copy()
print("==================删除=====================")
new_df = copy_df.drop(labels=['地址'],axis=1,inplace= True)
print(new_df)
print("===============删除后==================")
print(copy_df)

4) 删除多列数据 原df上删除
# 在原基础上,删除多列
copy_df = df.head().copy()
print("==================删除=====================")
new_df = copy_df.drop(labels=['地址','价格'],axis=1,inplace= True)
print(new_df)
print("===============删除后==================")
print(copy_df)

DataFrame数据去重
在pandas中,DataFrame.drop_duplicates(subset=, keep=, inplace=)方法用于删除数据框中的重复行。
-
subset:-
可以是一个列标签或列标签列表,表示根据这些列来判断重复行。
-
如果指定了
subset,则只考虑这些列中的值来确定重复行。例如,如果subset=['col1', 'col2'],那么只有当col1和col2列的值完全相同时,才会被认为是重复行。 -
如果不指定
subset,则会考虑所有列来判断重复行。
-
-
keep:-
决定保留哪些重复行。可以取以下三个值之一:
-
'first'(默认值):保留第一次出现的重复行。 -
'last':保留最后一次出现的重复行。 -
False:删除所有重复行。
-
-
-
inplace:-
这是一个布尔值参数。如果为
True,则直接在原始DataFrame上进行修改,不会返回新的DataFrame。如果为False(默认值),则会返回一个新的DataFrame,原始的DataFrame保持不变。
-
1) 对 '户型', '朝向' 去重, 保留第一条, 不影响原始数据
# 1 对 '户型', '朝向' 去重, 保留第一条, 不影响原始数据
# 1.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep='first',inplace=False)
print(new_df)
print("=================去重后===========================")
print(copy_df)

2) 对 '户型', '朝向' 去重, 保留最后一条, 不影响原始数据
# 2 对 '户型', '朝向' 去重, 保留最后一条, 不影响原始数据
# 1.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep='last',inplace=False)
print(new_df)
print("=================去重后===========================")
print(copy_df)

3) 对 '户型', '朝向' 去重, 删除所有重复数据, 不影响原始数据
# 3 对 '户型', '朝向' 去重, 删除所有重复数据, 不影响原始数据
# 3.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep=False,inplace=False)
print(new_df)
print("=================去重后===========================")
print(copy_df)

4) 对 '户型', '朝向' 去重, 保留第一条, 影响原始数据
# 4 对 '户型', '朝向' 去重, 保留第一条, 影响原始数据
# 4.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep='first',inplace=True)
print(new_df)
print("=================去重后===========================")
print(copy_df)

5) 对 '户型', '朝向' 去重, 保留最后一条, 影响原始数据
# 5 对 '户型', '朝向' 去重, 保留最后一条, 影响原始数据
# 5.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep='last',inplace=True)
print(new_df)
print("=================去重后===========================")
print(copy_df)

6) 对 '户型', '朝向' 去重, 删除所有重复数据, 影响原始数据
# 6 对 '户型', '朝向' 去重, 删除所有重复数据, 影响原始数据
# 6.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ],keep=False,inplace=True)
print(new_df)
print("=================去重后===========================")
print(copy_df)

7) 简化版1 对 '户型', '朝向' 去重
# 7 简化版1 对 '户型', '朝向' 去重
# 7.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates(subset=['户型', '朝向' ])
print(new_df)
print("=================去重后===========================")
print(copy_df)

8) 简化版2 对 所有列 去重
# 8 简化版2 对 所有列 去重
# 8.1 准备测试数据
copy_df = df.head().copy()
print("===============去重========================")
new_df = copy_df.drop_duplicates()
print(new_df)
print("=================去重后===========================")
print(copy_df)

相关文章:
DataFrame增删改数据
目录 准备数据 DataFrame添加列 直接添加列数据 使用insert添加列数据 DataFrame删除行列 准备数据 删除行 删除列 DataFrame数据去重 准备数据 import pandas as pd df pd.read_csv("../data/b_LJdata.csv") df DataFrame添加列 直接添加列数据 1&…...
一站式解决App下载量统计,Xinstall引领新潮流
在移动应用市场中,App下载量是衡量应用受欢迎程度和市场表现的重要指标。然而,对于许多开发者而言,如何精准统计App下载量却是一个不小的挑战。幸运的是,如今有了一款专业的App全渠道统计服务商——Xinstall,它能够帮助…...
ijkMediaPlayer+ TextureView 等比全屏播放视频(避免拉伸)
TextureView默认以fitxy的方式加载surface数据,如果需要等比全屏播放视频,避免拉伸,可以采用Matrix对TextureView进行变换 废话不多说,直接上代码 public class BaseIjkPlayer implements TextureView.SurfaceTextureListener{/…...
【RS】GEE(Python):数据处理
在前面的章节中,我们已经学习了如何加载影像数据。现在,让我们进一步探讨如何在 Google Earth Engine (GEE) 中进行数据处理。数据处理通常包括图像预处理、裁剪、过滤、重采样等操作。 栅格影像的处理 栅格影像处理包括了裁剪、波段选择、重采样、合成…...
非线性磁链观测器推导
<div id"content_views" class"htmledit_views"><p id"main-toc"><strong>目录</strong></p> 电机方程 电压方程 磁链方程 定义状态变量和输出变量 非线性观测器方程 电角度的计算--锁相环 锁相环调参 电机…...
什么时机用mysql,什么时机用redis,什么时机用本地内存
mysql 的 buffer pool 也是存在内存中,redis 的数据也是存在内存中,为什么不直接存在 mysql 里? 1、数据结构和访问方式 Redis 是一个内存数据库,专门为高效的读写性能而设计。它支持多种数据结构(如字符串、列表、哈…...
Redis八股
缓存 缓存穿透 当查询一个不存在的数据,mysql查询不到数据,无法写入缓存,导致每次都请求数据库 解决方法 缓存空数据,当查询结果未空,将结果进行缓存。 简单但是会消耗内存,而且会出现不一致情况。布隆…...
vue3--通用 popover 气泡卡片组件实现
背景 在日常开发中,我们一般都是利用一些诸如:element-ui、element-plus、ant-design等组件库去做我们的页面或者系统 这些对于一些后台管理系统来说是最好的选择,因为后台管理系统其实都是大同小异的,包括功能、布局结构等 但是对于前台项目,比如官网、门户网站这些 …...
Bluetooth Channel Sounding中关于CS Step及Phase Based Ranging相应Mode介绍
目录 BLE CS中Step定义 BLE CS中交互的数据包/波形格式 BLE CS中Step的不同Mode BLE CS中Step的执行过程 Mode0介绍 Mode0 步骤的作用 Mode0步骤的执行过程 Mode0步骤的执行时间 Mode0步骤的时间精度要求 Mode2介绍 Mode2步骤的作用和执行过程 Mode2步骤的执行时间 B…...
简易STL实现 | Queue 的实现
封装: std::queue 在底层容器的基础上 提供了封装。默认情况下,std::queue 使用 std::deque 作为其底层容器,但也可以配置为使用 std::list 或 其他符合要求的容器 时间复杂度: 入队和出队操作 通常是 常数时间复杂度(…...
【hot100-java】LRU 缓存
链表篇 灵神题解 class LRUCache {private static class Node{int key,value;Node prev,next;Node (int k,int v){keyk;valuev;}}private final int capacity;//哨兵节点private final Node dummynew Node(0,0);private final Map<Integer,Node> keyToNode new HashMap&l…...
Centos7安装ZLMediaKit
一 获取代码 git clone https://gitee.com/xia-chu/ZLMediaKit cd ZLMediaKit git submodule update --init git submodule update --init 命令用于初始化和更新 Git 仓库中的子模块(submodules)。这个命令在 Git 仓库中包含对其他 Git 仓库作为依赖时…...
面试问我LLM中的RAG,咱就是说秒过!!!
前言 本篇文章涉及了 RAG 流程中的数据拆分、向量化、查询重写、查询路由等等,在做 RAG 的小伙伴一定知道这些技巧的重要性。推荐仔细阅读,建议收藏,多读几遍,好好实践。 本文是对检索增强生成(Retrieval Augmented …...
python程序操作pdf
python代码进行多个图片合并为pdf: #python代码进行多个图片合并为pdf: from PIL import Image from fpdf import FPDF import osdef images_to_pdf(image_paths, output_pdf, quality85):"""将多个图片合并为一个PDF文件,并…...
【Python报错】ImportError: DLL load failed while importing _network: 找不到指定的模块。
【Python报错】ImportError: DLL load failed while importing _network: 找不到指定的模块。 问题描述报错原因解决方案参考 问题描述 此段Python代码(在Conda环境下运行)昨天还能运行,但在我手痒更新conda(我有罪)之…...
外包干了5天,技术明显退步
我是一名本科生,自2019年起,我便在南京某软件公司担任功能测试的工作。这份工作虽然稳定,但日复一日的重复性工作让我逐渐陷入了舒适区,失去了前进的动力。两年的时光匆匆流逝,我却在原地踏步,技术没有丝毫…...
正则表达式 | Python、Julia 和 Shell 语法详解
正则表达式在网页爬虫、脚本编写等众多任务中都有重要的应用。为了系统梳理其语法,以及 Python、Julia 和 Shell 中与正则表达式相关的工具,本篇将进行详细介绍。 相关学习资源:编程胶囊。 基础语法 通用语法 在大多数支持正则表达式的语…...
JavaScript全面指南(一)
🌈个人主页:前端青山 🔥系列专栏:JavaScript篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来JavaScript篇专栏内容:JavaScript全面指南(一) 1、介绍一下JS的内置类型有哪些? 基本数据类型…...
docker-compose与docker
“docker-compose” 是一个用于定义和运行多容器 Docker 应用程序的工具。它使用一个名为 docker-compose.yml 的配置文件来描述应用程序的服务、网络和卷,然后通过简单的命令就可以管理整个应用。 以下是一些常用的 docker-compose 命令及其用法: 启动…...
DDPM浅析
在机器学习和人工智能领域,生成模型一直是一个备受关注的研究方向。近年来,一种新型的生成模型——扩散概率模型(Diffusion Probabilistic Models,简称DDPM)引起了广泛的关注。本文将探讨DDPM的原理、优势以及应用。 …...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

