Triton服务在ASR语音识别系统中的实现
Triton服务在ASR语音识别系统中的实现
- 一、引言
- 二、环境准备
- 1. 硬件环境
- 2. 软件环境
- 三、模型选择与训练
- 1. 数据准备
- 2. 模型架构
- 3. 模型训练
- 四、模型转换与优化
- 1. 模型转换
- 2. 模型优化
- 五、配置Triton服务
- 1. 安装Triton服务
- 2. 创建模型仓库
一、引言
自动语音识别(Automatic Speech Recognition, ASR)技术在智能家居、智能客服、智能医疗等领域得到了广泛应用。ASR技术通过计算机程序将人类语音转换为文本或指令,极大地提升了人机交互的效率和准确性。然而,ASR系统在部署和应用过程中仍面临诸多挑战,如语音识别准确率的提升、模型推理效率的优化等。为了应对这些挑战,NVIDIA推出了Triton Inference Server,为ASR系统的部署和优化提供了强大的支持。本文将详细介绍如何使用Triton服务实现ASR语音识别系统,包括环境准备、模型选择与训练、模型转换与优化、配置Triton服务、部署ASR系统、性能优化与监控等方面,并附上相关代码示例。
二、环境准备
在部署ASR系统之前,需要准备好相应的硬件和软件环境。
1. 硬件环境
需要一台配备NVIDIA GPU的服务器。推荐使用NVIDIA Tesla系列或Quadro系列的GPU,以获得更好的性能表现。
2. 软件环境
- 操作系统:推荐使用Ubuntu或CentOS等Linux操作系统。
- CUDA和cuDNN:安装与GPU兼容的CUDA和cuDNN版本。
- TensorRT:安装NVIDIA TensorRT,用于模型推理加速。
- Triton Inference Server:从NVIDIA官方网站下载并安装Triton Inference Server。
- 深度学习框架:根据需要选择安装PyTorch、TensorFlow等深度学习框架。
三、模型选择与训练
在部署ASR系统之前,需要选择一个合适的ASR模型进行训练。常用的ASR模型包括基于深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)等。
1. 数据准备
准备用于模型训练的大规模语音数据集,包括语音文件和对应的文本标签。数据集应涵盖不同口音、语速和噪声环境下的语音样本,以提高模型的泛化能力。
2. 模型架构
选择一个合适的ASR模型架构,如基于Transformer的端到端ASR模型。Transformer模型具有强大的序列建模能力,适用于长语音序列的识别任务。
3. 模型训练
使用深度学习框架(如PyTorch)编写模型训练代码,加载语音数据集,进行模型训练。训练过程中,可以使用交叉熵损失函数作为优化目标,采用Adam等优化算法进行参数更新。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset# 假设已经定义了TransformerASR模型和数据集类
class TransformerASR(nn.Module):def __init__(self, ...):super(TransformerASR, self).__init__()# 初始化模型参数...def forward(self, x):# 前向传播过程...return outputclass SpeechDataset(Dataset):def __init__(self, ...):# 初始化数据集...def __len__(self):return len(self.data)def __getitem__(self, idx):# 获取单个样本...return audio_features, text_labels# 实例化模型和数据集
model = TransformerASR(...)
dataset = SpeechDataset(...)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 10
for epoch in range(num_epochs):model.train()for audio_features, text_labels in dataloader:optimizer.zero_grad()outputs = model(audio_features)loss = criterion(outputs, text_labels)loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')# 保存训练好的模型
torch.save(model.state_dict(), 'asr_model.pth')
四、模型转换与优化
在将训练好的模型部署到Triton服务之前,需要进行模型转换与优化。
1. 模型转换
将训练好的PyTorch模型转换为Triton支持的格式,如ONNX或TensorRT。
# 转换为ONNX格式
dummy_input = torch.randn(1, *input_size) # 假设input_size是模型输入的大小
torch.onnx.export(model, dummy_input, "asr_model.onnx", verbose=True)# 转换为TensorRT格式
explicit_batch = 1 << (int)(torch.cuda.CudnnDescriptor.NETWORK)
max_workspace_size = 1 << 30
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(explicit_batch)
parser = trt.OnnxParser(network, TRT_LOGGER)
parser.parse(model_onnx)
config = builder.create_builder_config()
config.max_workspace_size = max_workspace_size
engine = builder.build_cuda_engine(network)with open("asr_model.trt", "wb") as f:f.write(engine.serialize())
2. 模型优化
使用TensorRT对模型进行优化,提升推理速度和降低延迟。
import tensorrt as trtTRT_LOGGER = trt.Logger(trt.Logger.WARNING)# 加载TensorRT引擎
with open("asr_model.trt", "rb") as f:engine = trt.Runtime(TRT_LOGGER).deserialize_cuda_engine(f.read())# 创建执行上下文
context = engine.create_execution_context()# 推理函数
def infer(audio_features):d_input = cuda.mem_alloc(1 * trt.volume(engine.get_binding_shape(0)) * trt.float32.itemsize)d_output = cuda.mem_alloc(1 * trt.volume(engine.get_binding_shape(1)) * trt.float32.itemsize)# 拷贝输入数据到设备内存bindings = [int(d_input), int(d_output)]cuda.memcpy_htod(d_input, audio_features.contiguous().data_ptr())# 执行推理context.execute_v2(bindings=bindings, stream_handle=cuda.Stream())# 拷贝输出数据到主机内存output = torch.empty(trt.volume(engine.get_binding_shape(1)), dtype=torch.float32)cuda.memcpy_dtoh(output.data_ptr(), d_output)return output
五、配置Triton服务
配置Triton服务主要包括以下几个步骤:
1. 安装Triton服务
从NVIDIA官方网站下载Triton Inference Server的安装包,并按照官方文档进行安装和配置。
# 下载Triton Inference Server安装包
wget https://github.com/NVIDIA/triton-inference-server/releases/download/v2.X.X/tritonserver_2.X.X-1+cudaXX.cudaxx_ubuntu2004.tar.gz# 解压安装包
tar xzvf tritonserver_2.X.X-1+cudaXX.cudaxx_ubuntu2004.tar.gz# 进入安装目录
cd tritonserver_2.X.X-1+cudaXX.cudaxx_ubuntu2004# 启动Triton服务
./bin/tritonserver --model-repository=/path/to/model_repository
2. 创建模型仓库
在模型仓库中创建相应的目录结构,并将转换后的模型文件上传到相应的目录中。同时,编写模型配置文件(config.pbtxt),指定模型的名称、版本、后端框架、输入输出等信息。
# 模型仓库目录结构
/path/to/model_repository/
└── asr_model/├── 1/│ ├── model.onnx # 或 model.trt│ └── config.pbtxt└── ...# config.pbtxt示例
name: "asr_model"
platform: "onnxruntime_onnx" # 或 "tensorrt_plan"
max_batch_size: 16
input [{name: "input"data_type: TYPE_FP32dims: [ -1, ... ] # 根据模型输入的实际维度填写}
]
output [{name: "output"data_type: TYPE_FP32dims: [ -1, ... ] # 根据模型输出的实际维度填写}
]
相关文章:
Triton服务在ASR语音识别系统中的实现
Triton服务在ASR语音识别系统中的实现 一、引言二、环境准备1. 硬件环境2. 软件环境 三、模型选择与训练1. 数据准备2. 模型架构3. 模型训练 四、模型转换与优化1. 模型转换2. 模型优化 五、配置Triton服务1. 安装Triton服务2. 创建模型仓库 一、引言 自动语音识别(…...
Typora一款极简Markdown文档编辑、阅读器,实时预览,所见即所得,多主题,免费生成序列号!
文章目录 Typora下载安装Typora序列号生成 Typora是一款Markdown编辑器和阅读器,风格极简,实时预览,所见即所得,支持MacOS、Windows、Linux操作系统,有图片和文字、代码块、数学公式、图表、目录大纲、文件管理、导入导…...
python机器人编程——用python调用API控制wifi小车的实例程序
目录 一、前言二、一个客户端的简单实现2.1 首先定义一个类及属性2.2 其次定义连接方法2.3 定义一些回调函数2.4 定义发送小车指令方法2.5 定义一个正常关闭方法 三、python编程控制小车的demo实现四、小结PS.扩展阅读ps1.六自由度机器人相关文章资源ps2.四轴机器相关文章资源p…...
面试学习整理-线程池
线程池 简介JUC包线程池介绍线程池最常问也最常用-参数线程执行分析-线程是怎么运行的进程和线程的区别Executors工厂类提供四种线程池Executors和ThreaPoolExecutor创建线程池的区别两种提交任务的方法spring集成的线程池 简介 线程池作为实际使用和面试较多的技能区, 学习是…...
Debian会取代CentOS成为更主流的操作系统吗?
我们知道,其实之前的话,国内用户对centos几乎是情有独钟的偏爱,很多人都喜欢选择centos系统,可能是受到一些原因的影响导致的吧,比如他相当于免费的红帽子系统,或者一些教程和网上的资料都推荐这个系统&…...
网络安全领域推荐证书介绍及备考指南
在网络安全领域,拥有专业认证不仅可以证明个人的专业能力,还能帮助在实际工作中应用先进的技术和知识。以下是几种热门的网络安全证书介绍及备考指南。 1. OSCP (Offensive Security Certified Professional) 证书简介 OSCP是针对渗透测试领域的入门级…...
SpringBoot项目ES6.8升级ES7.4.0
SpringBoot项目ES6.8.15 升级到 ES7.4.0 前言 由于公司内部资产统一整理,并且公司内部部署有多个版本的es集群,所以有必要将目前负责项目的ES集群升级到公司同一版本7.4.0。es6到es7的升级变化还是挺大的,因此在这里做一下简单记录…...
深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务
引言 随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端…...
MFC工控项目实例二十六创建数据库
承接专栏《MFC工控项目实例二十五多媒体定时计时器》 用选取的型号为文件名建立文件夹,再在下面用测试的当天的时间创建文件夹,在这个文件中用测试的时/分/秒为数据库名创建Adcess数据库。 1、在StdAfx.h文件最下面添加代码 #import "C:/Program F…...
springmvc源码流程解析(一)
Springmvc 是基于servlet 规范来完成的一个请求响应模块,也是spring 中比较大的一个 模块,现在基本上都是零xml 配置了,采用的是约定大于配置的方式,所以我们的springmvc 也是采用这种零xml 配置的方式。 要完成这种过程ÿ…...
【论文阅读】SRGAN
学习资料 论文题目:基于生成对抗网络的照片级单幅图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network)论文地址:https://arxiv.org/abs/1609.04802代码:GitHub - xiph/daala: Modern video compression for the interne…...
kubelet PLEG实现
概述 kubelet的主要作用是确保pod状态和podspec保持一致,这里的pod状态包括pod中的container状态,个数等。 为了达到这个目的,kubelet需要从多个来源watch pod spec的变化,并周期从container runtime获取最新的container状态。比如…...
leetcode49:字母异位词分组
给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "nat", &…...
一个将.Geojson文件转成shapefile和kml文件的在线页面工具(续)
接上一专栏:这个网址有个bug,每个月只能免费转3次,这等于没用! 一个将.Geojson文件转成shapefile和kml文件的在线页面工具_geojson转shp在线-CSDN博客 下面这个网址实测可以免费多次转换! Quickmaptools : Geojson to…...
论文阅读(二十四):SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
文章目录 Abstract1.Introduction2.Shuffle Attention3.Code 论文:SA-Net:Shuffle Attention for Deep Convolutional Neural Networks(SA-Net:置换注意力机制) 论文链接:SA-Net:Shuffle Attention for Deep Convo…...
基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】
背景及意义 智能道路裂缝检测与分析系统在基础设施维护和安全监测方面起着非常重要的作用。道路裂缝是道路衰老和破坏的早期迹象,若不及时发现和修复,可能会导致道路结构的进一步恶化,甚至引发安全事故。本文基于YOLOv8深度学习框架ÿ…...
YOLOv11入门到入土使用教程(含结构图)
一、简介 YOLOv11是Ultralytics公司在之前的YOLO版本上推出的最新一代实时目标检测器,支持目标检测、追踪、实力分割、图像分类和姿态估计等任务。官方代码:ultralytics/ultralytics:ultralytics YOLO11 🚀 (github.com)https://g…...
python 爬虫抓取百度热搜
实现思路: 第1步、在百度热搜页获取热搜元素 元素类名为category-wrap_iQLoo 即我们只需要获取类名category-wrap_为前缀的元素 第2步、编写python脚本实现爬虫 import requests from bs4 import BeautifulSoupurl https://top.baidu.com/board?tabrealtime he…...
3.1 > Linux文件管理(基础版)
Linux 的命名规则 相对于其他操作系统(如 Windows )来说,Linux 的命名规则并没有那么多条条框框,还算是比较自由的。在 Linux 中,它的命名规则有如下几点要求: 首先是大小写敏感:例如在 Linux…...
CTFHUB技能树之文件上传——MIME绕过
开启靶场,打开链接: 直接指明是MIME验证 新建04MIME.php文件,内容如下: <?php echo "Ciallo~(∠・ω< )⌒★";eval($_POST[pass]);?> (这里加了点表情,加带点私货&#x…...
4种鼓励创业创新的方法
随着市场趋于饱和,许多企业,尤其是初创企业,很难在竞争中保持领先地位。技术为企业彻底改变其营销和管理策略铺平了道路。另一个经过实践检验的成功渗透特定市场的方法是在办公室内部激发创新,从员工到品牌皆如此。 那么究竟如何…...
C#中的LINQ之美:优雅的数据查询与操作
LINQ(Language Integrated Query,语言集成查询)是C#中一个强大的工具,它将查询功能直接融入到语言中,使开发者能够以一种更直观、更接近自然语言的方式来操作数据。LINQ不仅能极大地提高开发效率,而且让代码…...
深入浅出:深度学习模型部署全流程详解
博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: Yaoyao2024往期回顾: 【论文精读】PSAD:小样本部件分割揭示工业异常检测的合成逻辑每日一言🌼: 生活要有所期待, 否则就如同罩在…...
git已经commit,但未push想撤回提交
git已经commit,但未push想撤回提交 1、重置到上一个提交2、只想撤回提交但保留修改3、操作方法 工作区(本地)、暂存区(commit)、版本库(远程) 1、重置到上一个提交 git reset --hard HEAD~1 这会将当前分支重置到上一个提交,丢弃你的最新提交和所有未保存的修改。 …...
SSL VPN调试思路及配置指南
一、概述 本指南旨在详细阐述外部人员通过SSL VPN访问内部资源的调试过程与配置步骤。SSL VPN被单臂部署在核心交换机上,并通过外网防火墙将SSL VPN的443端口映射至外部网络,以实现安全的远程访问。 二、配置步骤 系统管理 网络设置: 配置接…...
多租户架构的全景分析(基本概念、实现策略、资源管理和隔离、数据安全与隔离、性能优化、扩展性与升级、案例研究)
文章目录 1. 多租户的基本概念2. 多租户的实现策略2.1 独立数据库模式2.2 共享数据库-独立Schema模式2.3 共享数据库-共享Schema模式 3. 资源管理和隔离4. 数据安全与隔离5. 性能优化6. 扩展性与升级7. 案例研究总结 多租户架构在云计算和SaaS应用中越来越流行,因为…...
TDengine数据库整合MyBatis实现SpringBoot项目CRUD
TDengine数据库整合MyBatis实现SpringBoot项目CRUD 官网: https://docs.taosdata.com/引入依赖 <!-- mybatis版本必须与druid版本兼容,否则无法创建DataSource --><dependency><groupId>com.alibaba</groupId><artifactId&…...
1493. 删除一个元素以后全为1的最长子数组 - 题解
> Problem: 1493. 删掉一个元素以后全为 1 的最长子数组 1493. 删除一个元素以后全为1的最长子数组 - 题解 问题描述 给定一个二进制数组 nums,你需要从中删除一个元素。请你在删掉元素后返回最长的且只包含 1 的非空子数组的长度。如果不存在这样的子数组&…...
密钥管理方法DUKPT的OpenSSL代码实现Demo
目录 1 DUKPT简介 2 基本概念 2.1 BDK 2.2 KSN 2.3 IPEK 2.4 FK 2.5 TK 3 工作流程 3.1 密钥注入过程 3.2 交易过程 3.3 BDK派生IPEK过程 3.4 IPEK计算FK过程 4 演示Demo 4.1 开发环境 4.2 功能介绍 4.3 下载地址 5 在线工具 6 标准下载 1 DUKPT简介 DUKPT&a…...
计算机视觉中的坐标变换
1.概述 高级驾驶辅助系统(ADAS)领域,存在多种常用的坐标系:LiDAR 坐标系、车辆坐标系、相机坐标系、图像坐标系等。因为和这些坐标系频繁打交道,本文对点的旋转与坐标系旋转等变换给出直观推导与说明。 2.坐标点平移…...
单页面推广网站/百度搜索引擎入口登录
声明式事务: 注解实现事务:...
国字型网站建设布局/2021小说排行榜百度风云榜
通过crontab -e写入定时任务的指令,一行为一项任务。 任务模式是时间克龙表达式命令形式。 如: 2 0,6,12,18 * * * perl /root/restarttomcat.pl perl之前的部分依次为2分 0点6点12点18点 任意日 任意月 任意周 perl /root/restarttomcat.pl 合起来为用p…...
区块链技术做网站/谷歌seo软件
在Linux /etc/passwd文件中每个用户都有一个对应的记录行,它记录了这个用户的一些基本属性。系统管理员经常会接触到这个文件的修改以完成对用户的管理工作。 它的内容类似下面的例子: 从上面的例子我们可以看到,/etc/passwd中一行记录对应着…...
做ppt用什么网站好/市场调研分析报告
本文最先发布在:如何在 Ubuntu 20.04 上安装 MySQLwww.itcoder.techMySQL是最流行的开源关系数据库管理系统。它速度快,容易使用,容易扩展,并且流行的LAMP和LEMP的一部分。这篇指南讲解了如何在 Ubuntu 20.04上安装和保护 MySQL…...
关键词优化是什么意思/独立站seo建站系统
2014年,HTML5页面作为营销界新宠儿,“多快好省”的杰出代表,其灵活性高、开发成本低且制作周期短的种种特性使其在移动营销领域大放异彩。 文/Teeya 此前,介绍了HTML5网页的基础知识、有哪些应用场景以及如何推广,反响…...
网站建设和运行费用/seo优化外包公司
接下去要分别分析下这几个文件:hw_config.c: 这个文件主要是配置一些跟板载及系统相关的代码,比如说USB系统时钟配置,上拉电阻引脚及LED灯配置,还有USB的中断灯。主要的函数如下: void Set_System(void); …...