Java 遗传算法
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法,用于求解复杂的搜索和优化问题。在Java中实现遗传算法通常包括以下几个步骤:
- 初始化种群:生成一组随机解作为初始种群。
- 适应度评估:定义一个适应度函数,用于评估每个解的优劣。
- 选择:根据适应度选择适应度较高的个体作为父代,用于生成下一代。
- 交叉(Crossover):通过交换父代的部分基因来生成子代。
- 变异(Mutation):以一定的概率随机改变子代的基因,增加种群的多样性。
- 替代:用子代替代部分或全部父代,形成新的种群。
- 终止条件:设定终止条件(如达到最大迭代次数或适应度达到某个阈值),终止算法。
以下是一个简单的Java实现遗传算法的示例,用于解决一个优化问题(如最大化某个函数)。
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random; class Individual { private int[] genes; private double fitness; public Individual(int geneLength) { genes = new int[geneLength]; Random rand = new Random(); for (int i = 0; i < geneLength; i++) { genes[i] = rand.nextInt(2); // 0 or 1 } } public double getFitness() { return fitness; } public void setFitness(double fitness) { this.fitness = fitness; } public int[] getGenes() { return genes; } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (int gene : genes) { sb.append(gene); } return sb.toString(); }
} class GeneticAlgorithm { private static final int POPULATION_SIZE = 100; private static final int GENE_LENGTH = 10; private static final int MAX_GENERATIONS = 1000; private static final double MUTATION_RATE = 0.01; public static void main(String[] args) { List<Individual> population = initializePopulation(POPULATION_SIZE, GENE_LENGTH); for (int generation = 0; generation < MAX_GENERATIONS; generation++) { evaluateFitness(population); List<Individual> newPopulation = generateNewPopulation(population); population = newPopulation; // 输出当前最优解 Collections.sort(population, (i1, i2) -> Double.compare(i2.getFitness(), i1.getFitness())); System.out.println("Generation " + generation + ": Best Fitness = " + population.get(0).getFitness()); } } private static List<Individual> initializePopulation(int populationSize, int geneLength) { List<Individual> population = new ArrayList<>(); for (int i = 0; i < populationSize; i++) { population.add(new Individual(geneLength)); } return population; } private static void evaluateFitness(List<Individual> population) { for (Individual individual : population) { // 示例适应度函数:计算二进制字符串中1的个数(可以根据具体问题修改) int countOnes = 0; for (int gene : individual.getGenes()) { if (gene == 1) { countOnes++; } } individual.setFitness(countOnes); } } private static List<Individual> generateNewPopulation(List<Individual> population) { List<Individual> newPopulation = new ArrayList<>(); while (newPopulation.size() < POPULATION_SIZE) { Individual parent1 = selectParent(population); Individual parent2 = selectParent(population); Individual child = crossover(parent1, parent2); mutate(child); newPopulation.add(child); } return newPopulation; } private static Individual selectParent(List<Individual> population) { // 轮盘赌选择 double totalFitness = population.stream().mapToDouble(Individual::getFitness).sum(); double randomValue = new Random().nextDouble() * totalFitness; double cumulativeFitness = 0.0; for (Individual individual : population) { cumulativeFitness += individual.getFitness(); if (cumulativeFitness >= randomValue) { return individual; } } return population.get(population.size() - 1); // 如果没有匹配,返回最后一个 } private static Individual crossover(Individual parent1, Individual parent2) { int crossoverPoint = new Random().nextInt(parent1.getGenes().length); int[] childGenes = new int[parent1.getGenes().length]; System.arraycopy(parent1.getGenes(), 0, childGenes, 0, crossoverPoint); System.arraycopy(parent2.getGenes(), crossoverPoint, childGenes, crossoverPoint, parent2.getGenes().length - crossoverPoint); return new Individual() { { this.genes = childGenes; } }; } private static void mutate(Individual individual) { Random rand = new Random(); for (int i = 0; i < individual.getGenes().length; i++) { if (rand.nextDouble() < MUTATION_RATE) { individual.getGenes()[i] = 1 - individual.getGenes()[i]; // 0变1,1变0 } } }
}
注意事项
- 适应度函数:根据具体问题定义,这里示例的是计算二进制字符串中1的个数。
- 选择方法:这里使用了轮盘赌选择(Roulette Wheel Selection),但还有其他选择方法如锦标赛选择(Tournament Selection)等。
- 交叉和变异:交叉和变异操作的具体实现可以根据问题需求进行调整。
- 性能优化:可以根据实际需求对算法进行优化,比如使用精英保留策略(Elite Preservation)等。
这个示例展示了基本的遗传算法框架,你可以根据具体需求进行扩展和修改。
相关文章:
Java 遗传算法
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法,用于求解复杂的搜索和优化问题。在Java中实现遗传算法通常包括以下几个步骤: 初始化种群:生成一组随机解作为初始种群。适应度评估&#x…...
C++ (一) 基础语法
基础语法:C的开胃小菜 欢迎来到C的世界,这里是编程的盛宴,也是逻辑的迷宫。别担心,我们不会一开始就让你啃硬骨头,而是从基础语法开始,让你慢慢品尝编程的美味。准备好了吗?让我们开始这场编程…...

Qt/C++路径轨迹回放/回放每个点信号/回放结束信号/拿到移动的坐标点经纬度
一、前言说明 在使用百度地图的路书功能中,并没有提供移动的信号以及移动结束的信号,但是很多时候都期望拿到移动的哪里了以及移动结束的信号,以便做出对应的处理,比如结束后需要触发一些对应的操作。经过搜索发现很多人都有这个…...
C 语言介绍及操作案例
C 语言是一种广泛使用的通用编程语言,具有高效、灵活和可移植性强等特点。 一、C 语言的基本特点 简洁高效 C 语言语法简洁,表达能力强。它提供了丰富的数据类型和运算符,可以方便地进行各种计算和操作。C 语言的代码执行效率高,能够直接访问硬件资源,适用于对性能要求较…...
Ivanti云服务被攻击事件深度解析:安全策略构建与未来反思
攻击事件背景 近期,威胁情报和研究机构Fortinet FortiGuard Labs发布了一份关于针对IT解决方案提供商Ivanti云服务设备(Ivanti Cloud Services Appliance,CSA)的复杂网络攻击的详细分析。 该攻击被怀疑是由国家级对手发起…...
如何做出正确选择编程语言:关于Delphi 与 C# 编程语言的优缺点对比
概述 为您的项目选择正确的技术可能是一项相当棘手的任务,尤其是当您以前从未需要做出这样的选择时。如今可用的选项范围非常广泛。虽然一些编程语言和工具有着相当悠久的历史,但其他一些则是刚刚开始赢得开发人员青睐的新手。 在这篇博文中࿰…...

39.3K Star,一个现代的数据库ORM工具,专为Node.js和TypeScript设计
大家好,今天给大家分享一个现代的数据库对象关系映射(Object-Relational Mapping,ORM)工具Prisma ORM,它旨在简化数据库操作,提高开发效率,并确保类型安全。 项目介绍 Prisma ORM适用于各种需要…...
Nginx和Mysql的基础命令
1.安装nginx brew install nginx 2.启动nginx brew services start nginx 3.查看nginx文件默认路径 brew info nginx 重装要先关闭nginx 4.nginx.conf 地址 nginx -t 5.nginx重启 brew services restart nginx 6.关闭nginx brew services stop nginx 7.卸载nginx brew uninstal…...
Docker之容器常见操作
docker 命令介绍 docker --help 管理命令: container 管理容器image 管理镜像network 管理网络命令: attach 介入到一个正在运行的容器build 根据 Dockerfile 构建一个镜像commit 根据容器的更改创建一个新的镜像cp 在本地文…...

猜数游戏(Fortran)
背景 学了两个月Fortran还没来一次正式练习 于是—— 代码 program gessnum! implicit none 不取消IN规则。integer::num,areal::Ncall random_seed()call random_number(N)aint(N*10)print*,"请输入您猜的数字:"read(*,*)numdo i1,3if (numa)thenpri…...
代码随想录 -- 贪心 -- 单调递增的数字
738. 单调递增的数字 - 力扣(LeetCode) 思路: 首先将正数n转化为字符串类型;定义一个flag:标记flag以及之后的位数都是9;从后向前遍历字符串n,如果当前的位数小于他上一位,将上一位…...

【小洛的VLOG】Web 服务器高并发压力测试(Reactor模型测试)
目录 引言 工具介绍 环境介绍 测试结果 个人主页:东洛的克莱斯韦克-CSDN博客 引言 大部分的网络通信都是支持TCP/IP协议栈,为了保证通信的可靠性,客户端和服务端之间需要建立链接。服务端能并发处理多少个链接,平均每秒钟能处理…...

Window:下载与安装triton==2.0.0
triton2.0.0谷仓下载 创建python3.10的工作环境: conda create -n anti-dreambooth python3.10然后在下载目录下执行代码: pip install triton-2.0.0-cp310-cp310-win_amd64.whl...

零,报错日志 2002-Can‘t connect to server on‘106.54.209.77‘(1006x)
零,报错日志 2002-Can’t connect to server on’106.54.209.77’(1006x) 今天差点被这个报错给折磨疯掉 尝试一:对腾讯云服务器进行更改 尝试二:针对配置文件处理 step1 //确保注释 /etc/mysql/mysql.conf.d/mysqld.cnf 下# bind-addres…...
R语言笔记(一)
文章目录 一、R objects二、Types of data三、Operators1、Operators2、Comparison operators3、Logical operators 四、Check types of data objects五、Convertion between data objects六、R workspace 一、R objects Two basic types of things/objects: data and functio…...

MusePose模型部署指南
一、模型介绍 MusePose是一个基于扩散和姿势引导的虚拟人视频生成框架。 主要贡献可以概括如下: 发布的模型能够根据给定的姿势序列,生成参考图中人物的舞蹈视频,生成的结果质量超越了同一主题中几乎所有当前开源的模型。发布该 pose alig…...

又一次升级:字节在用大模型在做推荐啦!
原文链接 字节前几天2024年9年19日公开发布的论文《HLLM:通过分层大型语言模型增强基于物品和用户模型的序列推荐效果》。 文字、图片、音频、视频这四大类信息载体,在生产端都已被AI生成赋能助力,再往前一步,一定需要一个更强势…...

无线领夹麦克风怎么挑选,麦克风行业常见踩坑点,避雷不专业产品
随着短视频和直播行业的迅速发展,近年来无线领夹麦克风热度持续高涨,作为一款小巧实用的音频设备,它受到很多视频创作者以及直播达人的喜爱。但如今无线领夹麦克风品类繁杂,大家选购时容易迷失方向,要知道并不是所有…...
OJ-1017中文分词模拟器
示例0 输入: ilovechina i,ilove,lo,love,ch,china,lovechina 输出: ilove,china 示例1 输入: ilovechina i,love,china,ch,na,ve,lo,this,is,the,word 输出: i,love,china 说明: 示例2 输入: iat i,love,…...
Unity 关于UGUI动静分离面试题详解
前言 近期有同学面试,被问到这样一道面试题: ”说说UGUI的动静分离是怎么一回事?” 关于这个优化有一些误区,容易让开发者陷入一个极端。我们先分析关于UGUI 合批优化的问题,最后给这个面试题一个参考回答。 对惹,…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...