trtexec 工具使用
本文介绍trtexec工具的使用,trtexec可以实现onnx模型导出trt模型、耗时分析和模型优化分析等功能,本节将对 trtexec的运用进行介绍。
1.trtexec
trtexec是官方提供的命令行工具,主要用于一下三个方面
生成模型序列化文件:由ONNX文件生成 TensorRT 引擎并序列化为 Plan文件/engine文件
查看模型文件信息:查看 ONNX文件或 Plan 文件的网络逐层信息
模型性能测试:测试 TensorRT 引擎基于随机输入或给定输入下的性能
trtexec提供了大量参数,整体可分为构建和运行两个阶段。
构建阶段常用参数
--onnx=: onnx文件路径
--minShapes=, --optShapes=, and --maxShapes=: 当是onnx模型时,可指定batchsize的动态范围。
–-memPoolSize=: 优化过程可使用的最大内存
--saveEngine=: 保存的文件输出路径
--fp16, --int8, --noTF32, and --best: 指定数据精度
--verbose: 是否需要打印详细信息。默认是不打印详细信息。
--skipInference: 创建并保存引擎文件,不执行推理过程。
--timingCacheFile=: 记录每个tensor的最小最大值、运行时间等,可以用来分析量化效果。
--dumpLayerInfo, --exportLayerInfo=: 打印及保存每一层详细信息 更多高级用法,
参考官方文档:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec
运行阶段常用参数
--loadEngine=: 要加载的模型文件
--shapes=:指定输入张量的形状 --loadInputs=: Load input values from files. Default is to generate random inputs.
--warmUp=, 热身阶段最短运行时间,单位ms
--duration=, 测试阶段最短运行时间,单位s
--iterations=: 测试阶段最小迭代次数
--useCudaGraph: 采用 CUDA graph 捕获和执行推理过程
--noDataTransfers: 关闭host与device之间的数据传输
--dumpProfile, --exportProfile=: 打印及保存每一层性能信息
--dumpLayerInfo, --exportLayerInfo=: 打印及保存每一层详细信息 更多高级用法,参考官方文档:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec
案例0:固定batchsize
输出固定batchsize的engine文件,这里需要注意,batchsize的状态需要与ONNX匹配,因此在生成onnx时需要设置好。
trtexec --onnx=resnet50_bs_1.onnx --saveEngine=resnet50_bs_1.engine
案例1: 动态batchsize使用 resnet50_bs_dynamic.onnx 可通过第十一章章生成
trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=resnet50_bs_dynamic_1-32-64.engine --timingCacheFile=dynamic-1-32-64.c ache --minShapes=input:1x3x224x224 --maxShapes=input:64x3x224x224 --optShapes=input:16x3x224x224
通过下表可知,fp32时,大batchsize带来吞吐量增加不明显,因此可考虑时延的平衡,选择batchsize=8。
案例2:fp32、fp16、int8 性能比较
运行配套代码中的run.bat/run.sh,可以查看log,观察吞吐量、时延的变化。
如下图所示,吞吐量方面
fp16相较于fp32有约2~3倍提升,int8相较于fp16约2倍提升
相同精度时,吞吐量随batchsize增加,但在32后增速不明显。int8随着batchsize增速潜力更大。
时延方面
时延随着batchsize是线性增长
fp32, fp16, int8的时延依次递减一半
案例3:查看层详细信息
通过参数--dumpLayerInfo --exportLayerInfo,可以输出各层详细信息,以及融合情况,还有输入输出张量的名字 (Bindings)
trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=demo.engine --skipInference --dumpLayerInfo --exportLayerInfo="exportL ayerInfo.log"
在exportLayerInfo.log文件中可以看到如下信息,主要包括
各网络层内容,以及融合情况“Reformatting CopyNode for Input Tensor 0 to Conv_0 + Relu_1”
Reformatting CopyNode 表示 TensorRT 将输入tensor 0 复制(Copy)到 Conv_0 和 Relu_1 两个层进行了融合 (Reformatting)。这里的 Reformatting 指的是 TensorRT 在优化网络结构时,会将一些层进行融合,以减少内存拷 贝和提高计算效率。CopyNode 则表示插入了一个拷贝层,用于将输入数据复制到融合后新的层中。
这种层的融合可以减少内存访问,优化数据流,从而提升推理性能。
Bindings:包括输入输出张量的名称,这个在onnx导出时设定的,在下游python推理代码中也会用到。
{"Layers": ["Reformatting CopyNode for Input Tensor 0 to Conv_0 + Relu_1" ,"Conv_0 + Relu_1"
,"MaxPool_2" ,"Conv_3 + Relu_4" ,"Conv_5 + Relu_6" ... ,"Reformatting CopyNode for Input Tensor 0 to Gemm_121" ,"Gemm_121" ,"reshape_after_Gemm_121" ], "Bindings": ["input" ,"output" ]}
案例4:verbose中的日志内容
打开verbose开关后,trtexec将输出详细内容,包括以下六大模块:
导入模型情况:模型格式、名称
参数配置情况:设置了哪些参数进行优化,例如 --fp16等
设备情况:当前GPU device具体信息
计算图优化细节:详细描述网络层融合情况,计算图优化结果
网络层实现方式选择(几千行):打印每个网络层选择的kernel的过程,挑选耗时最低的方法
耗时统计:统计推理耗时时间,包括数据拷贝、推理等耗时的统计值
trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=demo.engine --verbose > verbose.log 执行以下命令,可获得日志文件,下面对主要内容进行介绍。
Model Options :包含导入的模型内容
[08/20/2023-11:59:45] [I] === Model Options ===
[08/20/2023-11:59:45] [I] Format: ONNX
[08/20/2023-11:59:45] [I] Model: resnet50_bs_dynamic.onnx
[08/20/2023-11:59:45] [I] Output:
Build Options:创建trt模型的参数设置
[08/20/2023-11:59:45] [I] === Build Options ===
[08/20/2023-11:59:45] [I] Max batch: explicit batch
[08/20/2023-11:59:45] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[08/20/2023-11:59:45] [I] minTiming: 1
[08/20/2023-11:59:45] [I] avgTiming: 8
[08/20/2023-11:59:45] [I] Precision: FP32
推理设置
[08/20/2023-11:59:45] [I] === Inference Options===
[08/20/2023-11:59:45] [I] Batch: Explicit
[08/20/2023-11:59:45] [I] Input inference shapes: model
[08/20/2023-11:59:45] [I] Iterations: 10
[08/20/2023-11:59:45] [I] Duration: 3s (+ 200ms warm up)
[08/20/2023-11:59:45] [I] Sleep time: 0ms
[08/20/2023-11:59:45] [I] Idle time: 0ms
[08/20/2023-11:59:45] [I] Inference Streams: 1
日志输出设置
[08/20/2023-11:59:45] [I] === Reporting Options ===
[08/20/2023-11:59:45] [I] Verbose: Enabled
[08/20/2023-11:59:45] [I] Averages: 10 inferences
[08/20/2023-11:59:45] [I] Percentiles: 90,95,99
[08/20/2023-11:59:45] [I] Dump refittable layers:Disabled
[08/20/2023-11:59:45] [I] Dump output: Disabled
[08/20/2023-11:59:45] [I] Profile: Disabled
[08/20/2023-11:59:45] [I] Export timing to JSON file:
[08/20/2023-11:59:45] [I] Export output to JSON file:
[08/20/2023-11:59:45] [I] Export profile to JSON file:
设备信息
[08/20/2023-11:59:46] [I] === Device Information ===
[08/20/2023-11:59:46] [I] Selected Device: NVIDIA GeForce RTX 3060 Laptop GPU
[08/20/2023-11:59:46] [I] Compute Capability: 8.6
[08/20/2023-11:59:46] [I] SMs: 30
[08/20/2023-11:59:46] [I] Device Global Memory: 6143 MiB
[08/20/2023-11:59:46] [I] Shared Memory per SM: 100 KiB
[08/20/2023-11:59:46] [I] Memory Bus Width: 192 bits (ECC disabled)
[08/20/2023-11:59:46] [I] Application Compute Clock Rate: 1.702 GHz
[08/20/2023-11:59:46] [I] Application Memory Clock Rate: 7.001 GHz
[03/28/2024-15:01:18] [I] === Device Information ===
[03/28/2024-15:01:20] [I] Available Devices:
[03/28/2024-15:01:20] [I] Device 0: "NVIDIA GeForce RTX 4060 Laptop GPU
[03/28/2024-15:01:20] [I] Selected Device: NVIDIA GeForce RTX 4060 Laptop GPU
[03/28/2024-15:01:20] [I] Selected Device ID: 0
[03/28/2024-15:01:20] [I] Compute Capability: 8.9
[03/28/2024-15:01:20] [I] SMs: 24
[03/28/2024-15:01:20] [I] Device Global Memory: 8187 MiB
[03/28/2024-15:01:20] [I] Shared Memory per SM: 100 KiB
[03/28/2024-15:01:20] [I] Memory Bus Width: 128 bits (ECC disabled)
[03/28/2024-15:01:20] [I] Application Compute Clock Rate: 1.89 GHz
[03/28/2024-15:01:20] [I] Application Memory Clock Rate: 8.001 GHz
补充一个4060的显卡信息,可以看到SMs是少于3060的,这个与基本厂商的刀法有关。虽然是4060的设备,但是计算 性能比不上3060设备。因为里边的核心——SMs是少于3060的30个SM的。“SMs” 代表 “Streaming Multiprocessors”(流处理器),流处理器是执行 CUDA 核心的基本单元,SM越大算力越大。 对于RTX 4060 Laptop,官方显示有3072个CUDA核心,对应24个SM,即一个SM有128个CUDA核心。 对于RTX 3060 Laptop,官方显示有3840个CUDA核心,对应30个SM,也是符合一个SM有128个CUDA核心的。 4060不仅流处理器少,带宽也低,128 bits VS 192 bits,唯一的优点就是8GB VS 6GB了。
相关文章:

trtexec 工具使用
本文介绍trtexec工具的使用,trtexec可以实现onnx模型导出trt模型、耗时分析和模型优化分析等功能,本节将对 trtexec的运用进行介绍。 1.trtexec trtexec是官方提供的命令行工具,主要用于一下三个方面 生成模型序列化文件:由ONNX文…...

10款具备强大数据报告功能的电脑监控工具,办公电脑怎么监控
数据报告功能是电脑监控软件的重要特性,它能够帮助管理者全面了解员工的工作行为、应用使用情况,并生成详细的生产力分析报告。以下是10款具备强大数据报告功能的监控工具推荐,帮助企业有效管理和提升工作效率。 1. 固信软件 固信软件不仅是…...
如何理解Linux中的进程名
目录 一:程序的概念二:进程的概念三:线程的概念四:Linux中的进程名 一:程序的概念 程序就是采用某种特定格式编写的文本文件,该文件可以给编译器或者解释器编译和解释。编写好的程序平时存放在硬盘中。 二…...

微信红包设计流程讲解与实战分析
#1024程序员节 | 征文# 前言 微信红包作为大家耳熟能详的一种互动方式,其背后的技术支持包含多个方面。从用户发出红包到红包被抢完,涉及到的流程包括发红包、红包存储、红包拆分以及抢红包等。本文将详细介绍这一系列流程,并通过代码案例来…...

AI智能体:AI智能体(Agent)是什么?为什么要学?99%的人不知道!
为什么要学? 我们先搞清楚为什么? 最近看到 AI 创新力五问,我们日常生活中有使用 AI 来融入到我们的学习工作流嘛? 值得我们日常反省。 未来企业人才招聘测试AI创新力的五问: 您是否处于每天习惯使用 AI 的状态&am…...

NVR小程序接入平台/设备EasyNVR多个NVR同时管理的高效解决方案
在当今的数字化安防时代,视频监控系统的需求日益复杂和多样化。为了满足不同场景下的监控需求,一种高效、灵活且兼容性强的安防视频监控平台——NVR批量管理软件/平台EasyNVR应运而生。本篇探讨这一融合所带来的创新与发展。 一、NVR监测软件/设备EasyNV…...
APS开源源码解读: 排程工具 optaplanner II
上篇 排产,原则上也就是分配时间,分配资源;保证资源日历约束,保证工艺路线约束。我们看一下如何实现optaplanner 优化的 定义一个move, 一个move可能改变了分配到的资源,也可能改变了一个资源上的顺序。改变即意味着优…...

科技是把双刃剑,巧用技术改变财务预测
数字化和全球化的双向驱动,引领我国各行各业在技术革新的浪潮中不断扬帆。这一趋势不仅带来了前所未有的突破与创新,推进企业迈向数据驱动决策的新未来,同时也伴随着一些潜在的问题和挑战。科技的普及就像是一场革命,在财务管理领…...

vscode默认添加python项目的源目录路径到执行环境(解决ModuleNotFoundError: No module named问题)
0. 问题描述 vscode中编写python脚本,导入工程目录下的其他模块,出现ModuleNotFoundError: No module named 错误 在test2的ccc.py文件中执行print(sys.path) 查看路径 返回结果发现并无’/home/xxx/first_demo’的路径,所以test2下面的文…...

【每日刷题】Day143
【每日刷题】Day143 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 200. 岛屿数量 - 力扣(LeetCode) 2. LCR 105. 岛屿的最大面积 - 力扣&…...

基于Springboot智能学习平台的设计与实现
基于Springboot智能学习平台的设计与实现 开发语言:Java 框架:springboot JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:idea 源码获取:https://download.csdn.net/downlo…...

黑马javaWeb笔记重点备份11:Web请求与响应
请求 SpringBoot内置Servlet 在Tomcat这类Web服务器中,是不识别我们自己定义的Controller的,但在tomcat中是可以识别 Servlet程序的。在SpringBoot进行web程序开发时,它内置了一个核心的Servlet程序 DispatcherServlet,称之为 核…...
H5对接海康硬盘录像机视频简单说明
开发过程中使用HTML5(通常是通过Web技术栈,如HTML、CSS、JavaScript)与海康威视(Hikvision)的硬盘录像机(DVR)进行视频对接,通常涉及以下步骤: 获取DVR的RTSP流地址:海康威视DVR支持RTSP协议,你可以通过DVR的管理界面获取每个摄像头的RTSP流地址。 使用视频播放器库…...

测试人必备的Linux常用命令大全...【全网最全面整理】
Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错。我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,…...
苹果AI落后两年?——深度解析苹果在AI领域的挑战与前景
# 苹果AI落后两年?——深度解析苹果在AI领域的挑战与前景 近年来,人工智能(AI)领域的技术竞争日益激烈,各大科技巨头纷纷推出突破性的AI产品。然而,关于苹果公司在AI领域的表现,最近传出一些内…...

三菱PLC伺服-停止位置不正确故障排查
停止位置不正确时,请确认以下项目。 1)请确认伺服放大器(驱动单元)的电子齿轮的设定是否正确。 2)请确认原点位置是否偏移。 1、设计近点信号(DOG)时,请考虑有足够为0N的时间能充分减速到爬行速度。该指令在DOG的前端开始减速到爬行速度&…...
Mybatis 批量操作存在则更新或者忽略,不存在则插入
Mybatis 批量操作新增,如果存在重复有下列2种处理方式: 1、存在则忽略代码示例: <insert id"insertDuplicateKeyIgnoreList">INSERT IGNORE INTO specs(status,type,code,name,create_time,create_by)VALUES<foreach col…...

「C/C++」C++ STL容器库 之 std::deque 双端队列容器
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...

一招教你解决Facebook广告账号问题
这段时间,我们写了很多文章来探讨Facebook的广告账户问题:《Facebook被封号该怎么办》《Facebook二不限、三不限账号是什么》《Facebook海外户(三不限)和账单户该如何选择》《如何区分真假Facebook三不限海外户》相信看过这些文章…...
MySQL启动报错:InnoDB: Unable to lock ./ibdata1 error
MySQL启动报错:InnoDB: Unable to lock ./ibdata1 error 在OS X环境下MySQL启动时报错: 016-03-03T00:02:30.483037Z 0 [ERROR] InnoDB: Unable to lock ./ibdata1 error: 35 2016-03-03T00:02:30.483100Z 0 [Note] InnoDB: Check that you do not alr…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...