当前位置: 首页 > news >正文

trtexec 工具使用

        本文介绍trtexec工具的使用,trtexec可以实现onnx模型导出trt模型、耗时分析和模型优化分析等功能,本节将对 trtexec的运用进行介绍。

1.trtexec

        trtexec是官方提供的命令行工具,主要用于一下三个方面

        生成模型序列化文件:由ONNX文件生成 TensorRT 引擎并序列化为 Plan文件/engine文件

        查看模型文件信息:查看 ONNX文件或 Plan 文件的网络逐层信息

        模型性能测试:测试 TensorRT 引擎基于随机输入或给定输入下的性能

trtexec提供了大量参数,整体可分为构建和运行两个阶段。

构建阶段常用参数

--onnx=: onnx文件路径

--minShapes=, --optShapes=, and --maxShapes=: 当是onnx模型时,可指定batchsize的动态范围。

–-memPoolSize=: 优化过程可使用的最大内存

--saveEngine=: 保存的文件输出路径

--fp16, --int8, --noTF32, and --best: 指定数据精度

--verbose: 是否需要打印详细信息。默认是不打印详细信息。

--skipInference: 创建并保存引擎文件,不执行推理过程。

--timingCacheFile=: 记录每个tensor的最小最大值、运行时间等,可以用来分析量化效果。

--dumpLayerInfo, --exportLayerInfo=: 打印及保存每一层详细信息 更多高级用法,

参考官方文档:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec

运行阶段常用参数

--loadEngine=: 要加载的模型文件

--shapes=:指定输入张量的形状 --loadInputs=: Load input values from files. Default is to generate random inputs.

--warmUp=, 热身阶段最短运行时间,单位ms

--duration=, 测试阶段最短运行时间,单位s

--iterations=: 测试阶段最小迭代次数

--useCudaGraph: 采用 CUDA graph 捕获和执行推理过程

--noDataTransfers: 关闭host与device之间的数据传输

--dumpProfile, --exportProfile=: 打印及保存每一层性能信息

--dumpLayerInfo, --exportLayerInfo=: 打印及保存每一层详细信息 更多高级用法,参考官方文档:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec

案例0:固定batchsize

输出固定batchsize的engine文件,这里需要注意,batchsize的状态需要与ONNX匹配,因此在生成onnx时需要设置好。

trtexec --onnx=resnet50_bs_1.onnx --saveEngine=resnet50_bs_1.engine

案例1: 动态batchsize使用 resnet50_bs_dynamic.onnx 可通过第十一章章生成

        trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=resnet50_bs_dynamic_1-32-64.engine --timingCacheFile=dynamic-1-32-64.c ache --minShapes=input:1x3x224x224 --maxShapes=input:64x3x224x224 --optShapes=input:16x3x224x224

通过下表可知,fp32时,大batchsize带来吞吐量增加不明显,因此可考虑时延的平衡,选择batchsize=8。

案例2:fp32、fp16、int8 性能比较

        运行配套代码中的run.bat/run.sh,可以查看log,观察吞吐量、时延的变化。

如下图所示,吞吐量方面

        fp16相较于fp32有约2~3倍提升,int8相较于fp16约2倍提升

        相同精度时,吞吐量随batchsize增加,但在32后增速不明显。int8随着batchsize增速潜力更大。

时延方面

        时延随着batchsize是线性增长

        fp32, fp16, int8的时延依次递减一半 

案例3:查看层详细信息

        通过参数--dumpLayerInfo --exportLayerInfo,可以输出各层详细信息,以及融合情况,还有输入输出张量的名字 (Bindings)

trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=demo.engine --skipInference --dumpLayerInfo --exportLayerInfo="exportL ayerInfo.log" 

在exportLayerInfo.log文件中可以看到如下信息,主要包括

各网络层内容,以及融合情况“Reformatting CopyNode for Input Tensor 0 to Conv_0 + Relu_1”

Reformatting CopyNode 表示 TensorRT 将输入tensor 0 复制(Copy)到 Conv_0 和 Relu_1 两个层进行了融合 (Reformatting)。这里的 Reformatting 指的是 TensorRT 在优化网络结构时,会将一些层进行融合,以减少内存拷 贝和提高计算效率。CopyNode 则表示插入了一个拷贝层,用于将输入数据复制到融合后新的层中。

这种层的融合可以减少内存访问,优化数据流,从而提升推理性能。

Bindings:包括输入输出张量的名称,这个在onnx导出时设定的,在下游python推理代码中也会用到。

{"Layers": ["Reformatting CopyNode for Input Tensor 0 to Conv_0 + Relu_1" ,"Conv_0 + Relu_1"

,"MaxPool_2" ,"Conv_3 + Relu_4" ,"Conv_5 + Relu_6" ... ,"Reformatting CopyNode for Input Tensor 0 to Gemm_121" ,"Gemm_121" ,"reshape_after_Gemm_121" ], "Bindings": ["input" ,"output" ]}

案例4:verbose中的日志内容

        打开verbose开关后,trtexec将输出详细内容,包括以下六大模块:

导入模型情况:模型格式、名称

参数配置情况:设置了哪些参数进行优化,例如 --fp16等

设备情况:当前GPU device具体信息

计算图优化细节:详细描述网络层融合情况,计算图优化结果

网络层实现方式选择(几千行):打印每个网络层选择的kernel的过程,挑选耗时最低的方法

耗时统计:统计推理耗时时间,包括数据拷贝、推理等耗时的统计值

trtexec --onnx=resnet50_bs_dynamic.onnx --saveEngine=demo.engine --verbose > verbose.log 执行以下命令,可获得日志文件,下面对主要内容进行介绍。

Model Options :包含导入的模型内容

[08/20/2023-11:59:45] [I] === Model Options ===

[08/20/2023-11:59:45] [I] Format: ONNX

[08/20/2023-11:59:45] [I] Model: resnet50_bs_dynamic.onnx

[08/20/2023-11:59:45] [I] Output:

Build Options:创建trt模型的参数设置

[08/20/2023-11:59:45] [I] === Build Options ===

[08/20/2023-11:59:45] [I] Max batch: explicit batch

[08/20/2023-11:59:45] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default

[08/20/2023-11:59:45] [I] minTiming: 1

[08/20/2023-11:59:45] [I] avgTiming: 8

[08/20/2023-11:59:45] [I] Precision: FP32

推理设置

[08/20/2023-11:59:45] [I] === Inference Options===

[08/20/2023-11:59:45] [I] Batch: Explicit

[08/20/2023-11:59:45] [I] Input inference shapes: model

[08/20/2023-11:59:45] [I] Iterations: 10

[08/20/2023-11:59:45] [I] Duration: 3s (+ 200ms warm up)

[08/20/2023-11:59:45] [I] Sleep time: 0ms

[08/20/2023-11:59:45] [I] Idle time: 0ms

[08/20/2023-11:59:45] [I] Inference Streams: 1

日志输出设置

[08/20/2023-11:59:45] [I] === Reporting Options ===

[08/20/2023-11:59:45] [I] Verbose: Enabled

[08/20/2023-11:59:45] [I] Averages: 10 inferences

[08/20/2023-11:59:45] [I] Percentiles: 90,95,99

[08/20/2023-11:59:45] [I] Dump refittable layers:Disabled

[08/20/2023-11:59:45] [I] Dump output: Disabled

[08/20/2023-11:59:45] [I] Profile: Disabled

[08/20/2023-11:59:45] [I] Export timing to JSON file:

[08/20/2023-11:59:45] [I] Export output to JSON file:

[08/20/2023-11:59:45] [I] Export profile to JSON file:

设备信息

[08/20/2023-11:59:46] [I] === Device Information ===

[08/20/2023-11:59:46] [I] Selected Device: NVIDIA GeForce RTX 3060 Laptop GPU

[08/20/2023-11:59:46] [I] Compute Capability: 8.6

[08/20/2023-11:59:46] [I] SMs: 30

[08/20/2023-11:59:46] [I] Device Global Memory: 6143 MiB

[08/20/2023-11:59:46] [I] Shared Memory per SM: 100 KiB

[08/20/2023-11:59:46] [I] Memory Bus Width: 192 bits (ECC disabled)

[08/20/2023-11:59:46] [I] Application Compute Clock Rate: 1.702 GHz

[08/20/2023-11:59:46] [I] Application Memory Clock Rate: 7.001 GHz

[03/28/2024-15:01:18] [I] === Device Information ===

[03/28/2024-15:01:20] [I] Available Devices:

[03/28/2024-15:01:20] [I] Device 0: "NVIDIA GeForce RTX 4060 Laptop GPU

[03/28/2024-15:01:20] [I] Selected Device: NVIDIA GeForce RTX 4060 Laptop GPU

[03/28/2024-15:01:20] [I] Selected Device ID: 0

[03/28/2024-15:01:20] [I] Compute Capability: 8.9

[03/28/2024-15:01:20] [I] SMs: 24

[03/28/2024-15:01:20] [I] Device Global Memory: 8187 MiB

[03/28/2024-15:01:20] [I] Shared Memory per SM: 100 KiB

[03/28/2024-15:01:20] [I] Memory Bus Width: 128 bits (ECC disabled)

[03/28/2024-15:01:20] [I] Application Compute Clock Rate: 1.89 GHz

[03/28/2024-15:01:20] [I] Application Memory Clock Rate: 8.001 GHz

补充一个4060的显卡信息,可以看到SMs是少于3060的,这个与基本厂商的刀法有关。虽然是4060的设备,但是计算 性能比不上3060设备。因为里边的核心——SMs是少于3060的30个SM的。“SMs” 代表 “Streaming Multiprocessors”(流处理器),流处理器是执行 CUDA 核心的基本单元,SM越大算力越大。 对于RTX 4060 Laptop,官方显示有3072个CUDA核心,对应24个SM,即一个SM有128个CUDA核心。 对于RTX 3060 Laptop,官方显示有3840个CUDA核心,对应30个SM,也是符合一个SM有128个CUDA核心的。 4060不仅流处理器少,带宽也低,128 bits VS 192 bits,唯一的优点就是8GB VS 6GB了。

相关文章:

trtexec 工具使用

本文介绍trtexec工具的使用,trtexec可以实现onnx模型导出trt模型、耗时分析和模型优化分析等功能,本节将对 trtexec的运用进行介绍。 1.trtexec trtexec是官方提供的命令行工具,主要用于一下三个方面 生成模型序列化文件:由ONNX文…...

10款具备强大数据报告功能的电脑监控工具,办公电脑怎么监控

数据报告功能是电脑监控软件的重要特性,它能够帮助管理者全面了解员工的工作行为、应用使用情况,并生成详细的生产力分析报告。以下是10款具备强大数据报告功能的监控工具推荐,帮助企业有效管理和提升工作效率。 1. 固信软件 固信软件不仅是…...

如何理解Linux中的进程名

目录 一:程序的概念二:进程的概念三:线程的概念四:Linux中的进程名 一:程序的概念 程序就是采用某种特定格式编写的文本文件,该文件可以给编译器或者解释器编译和解释。编写好的程序平时存放在硬盘中。 二…...

微信红包设计流程讲解与实战分析

#1024程序员节 | 征文# 前言 微信红包作为大家耳熟能详的一种互动方式,其背后的技术支持包含多个方面。从用户发出红包到红包被抢完,涉及到的流程包括发红包、红包存储、红包拆分以及抢红包等。本文将详细介绍这一系列流程,并通过代码案例来…...

AI智能体:AI智能体(Agent)是什么?为什么要学?99%的人不知道!

为什么要学? 我们先搞清楚为什么? 最近看到 AI 创新力五问,我们日常生活中有使用 AI 来融入到我们的学习工作流嘛? 值得我们日常反省。 未来企业人才招聘测试AI创新力的五问: 您是否处于每天习惯使用 AI 的状态&am…...

NVR小程序接入平台/设备EasyNVR多个NVR同时管理的高效解决方案

在当今的数字化安防时代,视频监控系统的需求日益复杂和多样化。为了满足不同场景下的监控需求,一种高效、灵活且兼容性强的安防视频监控平台——NVR批量管理软件/平台EasyNVR应运而生。本篇探讨这一融合所带来的创新与发展。 一、NVR监测软件/设备EasyNV…...

APS开源源码解读: 排程工具 optaplanner II

上篇 排产,原则上也就是分配时间,分配资源;保证资源日历约束,保证工艺路线约束。我们看一下如何实现optaplanner 优化的 定义一个move, 一个move可能改变了分配到的资源,也可能改变了一个资源上的顺序。改变即意味着优…...

科技是把双刃剑,巧用技术改变财务预测

数字化和全球化的双向驱动,引领我国各行各业在技术革新的浪潮中不断扬帆。这一趋势不仅带来了前所未有的突破与创新,推进企业迈向数据驱动决策的新未来,同时也伴随着一些潜在的问题和挑战。科技的普及就像是一场革命,在财务管理领…...

vscode默认添加python项目的源目录路径到执行环境(解决ModuleNotFoundError: No module named问题)

0. 问题描述 vscode中编写python脚本,导入工程目录下的其他模块,出现ModuleNotFoundError: No module named 错误 在test2的ccc.py文件中执行print(sys.path) 查看路径 返回结果发现并无’/home/xxx/first_demo’的路径,所以test2下面的文…...

【每日刷题】Day143

【每日刷题】Day143 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 200. 岛屿数量 - 力扣(LeetCode) 2. LCR 105. 岛屿的最大面积 - 力扣&…...

基于Springboot智能学习平台的设计与实现

基于Springboot智能学习平台的设计与实现 开发语言:Java 框架:springboot JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:idea 源码获取:https://download.csdn.net/downlo…...

黑马javaWeb笔记重点备份11:Web请求与响应

请求 SpringBoot内置Servlet 在Tomcat这类Web服务器中,是不识别我们自己定义的Controller的,但在tomcat中是可以识别 Servlet程序的。在SpringBoot进行web程序开发时,它内置了一个核心的Servlet程序 DispatcherServlet,称之为 核…...

H5对接海康硬盘录像机视频简单说明

开发过程中使用HTML5(通常是通过Web技术栈,如HTML、CSS、JavaScript)与海康威视(Hikvision)的硬盘录像机(DVR)进行视频对接,通常涉及以下步骤: 获取DVR的RTSP流地址:海康威视DVR支持RTSP协议,你可以通过DVR的管理界面获取每个摄像头的RTSP流地址。 使用视频播放器库…...

测试人必备的Linux常用命令大全...【全网最全面整理】

Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错。我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因&#xff0c…...

苹果AI落后两年?——深度解析苹果在AI领域的挑战与前景

# 苹果AI落后两年?——深度解析苹果在AI领域的挑战与前景 近年来,人工智能(AI)领域的技术竞争日益激烈,各大科技巨头纷纷推出突破性的AI产品。然而,关于苹果公司在AI领域的表现,最近传出一些内…...

三菱PLC伺服-停止位置不正确故障排查

停止位置不正确时,请确认以下项目。 1)请确认伺服放大器(驱动单元)的电子齿轮的设定是否正确。 2)请确认原点位置是否偏移。 1、设计近点信号(DOG)时,请考虑有足够为0N的时间能充分减速到爬行速度。该指令在DOG的前端开始减速到爬行速度&…...

Mybatis 批量操作存在则更新或者忽略,不存在则插入

Mybatis 批量操作新增&#xff0c;如果存在重复有下列2种处理方式&#xff1a; 1、存在则忽略代码示例&#xff1a; <insert id"insertDuplicateKeyIgnoreList">INSERT IGNORE INTO specs(status,type,code,name,create_time,create_by)VALUES<foreach col…...

「C/C++」C++ STL容器库 之 std::deque 双端队列容器

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「C/C」C/C程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...

一招教你解决Facebook广告账号问题

这段时间&#xff0c;我们写了很多文章来探讨Facebook的广告账户问题&#xff1a;《Facebook被封号该怎么办》《Facebook二不限、三不限账号是什么》《Facebook海外户&#xff08;三不限&#xff09;和账单户该如何选择》《如何区分真假Facebook三不限海外户》相信看过这些文章…...

MySQL启动报错:InnoDB: Unable to lock ./ibdata1 error

MySQL启动报错&#xff1a;InnoDB: Unable to lock ./ibdata1 error 在OS X环境下MySQL启动时报错&#xff1a; 016-03-03T00:02:30.483037Z 0 [ERROR] InnoDB: Unable to lock ./ibdata1 error: 35 2016-03-03T00:02:30.483100Z 0 [Note] InnoDB: Check that you do not alr…...

Linux终端之旅: 打包和压缩

在 Linux 世界中&#xff0c;打包和压缩文件是管理系统资源、传输数据和备份的重要技能。通过命令行工具如 tar、gzip、zip 等&#xff0c;我们可以高效地将多个文件或目录打包为一个文件&#xff0c;并通过压缩减少其体积。接下来&#xff0c;我将记录学习如何利用这些工具&am…...

PDA手持机提升管理效率和准确性

在当今快节奏的商业世界中&#xff0c;管理效率和准确性是企业成功的关键因素。而 PDA 手持机的出现&#xff0c;为企业管理带来了革命性的变革&#xff0c;成为提升管理效率和准确性的有力武器。 PDA 手持机&#xff0c;即个人数字助理手持设备&#xff0c;集数据采集、存储、…...

C++ [项目] 愤怒的小鸟

现在才发现C游戏的支持率这么高&#xff0c;那就发几篇吧 零、前情提要 此篇为 制作,由于他没有CSDN,于是由我代发 一、基本介绍 支持Dev-C5.11版本(务必调为英文输入法),基本操作看游戏里的介绍,怎么做的……懒得说,能看懂就看注释,没有的自己猜,如果你很固执……私我吧 …...

群控系统服务端开发模式-市场分析

刚刚我把群控系统服务端开发模式的文档全部整理了一下&#xff0c;结果发现还缺市场分析这篇文档没有上传&#xff0c;不好意思啦。 一、前言 在互联网高速发展且稳定的时代&#xff0c;营销系统是自运营公司线上最好的系统。加上现在直播行业很火&#xff0c;引流很重要&#…...

智能听诊器革新宠物健康监测

在宠物健康护理领域&#xff0c;智能听诊器的引入标志着一个新时代的开启&#xff0c;它正成为宠物医疗保健的新宠。这款设备通过高精度传感器捕捉宠物的心跳和呼吸声&#xff0c;为宠物主人和兽医提供精确的健康数据。 智能听诊器的即时反馈功能&#xff0c;使得主人能够通过…...

2000-2023年上市公司绿色专利申请授权面板数据

2000-2023年上市公司绿色专利申请授权面板数据 1、时间&#xff1a;2000-2023年 2、来源&#xff1a;国家知识产权局、WPIO清单 3、指标&#xff1a;年份、股票代码、股票简称、行业名称、行业代码、省份、城市、区县、区县代码、上市状态、绿色专利申请总量、绿色发明专利申…...

vue使用xlsx以及file-saver进行下载xlsx文件以及Unit8Array、ArrayBuffer、charCodeAt的使用

先说Unit8Array、ArrayBuffer、charCodeAt的使用下面会用到这三个 Unit8Array&#xff1a;数组类型表示一个 8 位无符号整型数组&#xff0c;创建时内容被初始化为 0。创建完后&#xff0c;可以以对象的方式或使用数组下标索引的方式引用数组中的元素。 new Uint8Array(); //…...

日语表目的的两个句型,柯桥成人零基础日语培训

句型&#xff1a; &#xff08;能做动词的&#xff09;名词&#xff08;或动词连用形&#xff09;に来ました&#xff08;或行きます&#xff09; 例句&#xff1a; わたしは日本へ文学の勉強に来ました。/我是到日本来学习文学的。 翻译&#xff1a; &#xff08;我&#…...

小程序中设置可拖动区域

官方说明文档&#xff1a;https://developers.weixin.qq.com/miniprogram/dev/component/movable-area.htmlhttps://developers.weixin.qq.com/miniprogram/dev/component/movable-view.html demo&#xff1a;浮动控件上下移动交互 .wxmx <movable-area><!-- y"…...

前端后台管理开发

1通常项目从头开发&#xff0c;有人是二开&#xff0c;有人是从头&#xff0c;也有人是复制之前人留的。 2通常要自己写就很费时间&#xff0c;多数都是接别人的二手代码继续干&#xff0c;导致很多人没有从头开发的经验&#xff0c;做两三年。 3项目开始一般要选择搭建环境&am…...

网站建设前的功能/b站推广链接

字节跳动启动了史上规模最大的招聘共计7000岗位&#xff0c;每个人有两次投递机会包括抖音&#xff0c;今日头条&#xff0c;西瓜在内评论区好热闹俗话说“三月不跳槽&#xff0c;四月徒伤悲”又到了一年一度的“跳槽黄金季”在职场中&#xff0c;有不少的的瞬间我们自己觉得洪…...

最专业的营销网站建设公司排名/今日头条军事新闻

2019独角兽企业重金招聘Python工程师标准>>> 外观界面 <body ng-app""> <div ng-init"names[0,1,2,3]"> <p>遍历数组信息</p> <ul> <!-- 类似JSTL foreach标签&#xff1a;item为数组names的临时成员变量 --&…...

互联网创业就是做网站吗/网络营销的基本方式有哪些

BMW 病毒样本 开源、开放、自由、分享转载于:https://blog.51cto.com/missuniverse110/905332...

绥中做网站/网站搜索优化价格

描述 HTML5 <canvas> 标签用于绘制图像&#xff08;通过脚本&#xff0c;通常是 JavaScript&#xff09;。 不过&#xff0c;<canvas> 元素本身并没有绘制能力&#xff08;它仅仅是图形的容器&#xff09; - 您必须使用脚本来完成实际的绘图任务。 getContext() 方…...

网站建设技术公司/营销计划书7个步骤

-二叉树递归遍历与非递归遍历实现 引言0 有关线性表结点定义-LinkNode1 栈的链式存储结构实现-LinkedStack2 队列的链式存储结构实现-LinkedQueue3 二叉树的链式存储结构实现3.1 树的结点定义-TreeNode3.2 二叉树定义3.3 前中后序遍历-递归算法实现3.4 前中后序遍历-非递归算法…...

西安疫情最新消息今天封城/苏州排名搜索优化

Linux下&#xff0c;如何将一个乱码的文件进行重命名方法一&#xff1a;命令格式&#xff1a;mv $(ls |egrep "[^a-zA-Z0-9.-]") tandao.tx[rootnb o]# ls |egrep "[^a-zA-Z0-9.-]"?-?ˉ? ###从找到文件中找出乱码文件[rootnb o]# mv $(ls |egrep "…...