当前位置: 首页 > news >正文

[Linux Codec驱动]音频路由概念

1. 音频路由的基本概念

  • 源(Source):音频信号的发出方,通常是一个音频输入设备,如麦克风、音频播放设备等。
  • 接收端(Sink):音频信号的接收方,通常是音频输出设备,如扬声器、耳机等。
  • 路由(Routing):指音频信号从源到接收端的路径。在音频驱动中,路由信息定义了哪些源和接收端是相互连接的。

2. 音频路由的信息格式

在音频驱动中,路由信息通常在设备树(Device Tree)中以字符串形式定义。这些字符串成对出现,分别表示源和接收端。例如:

"source_device_name", "sink_device_name"

在这个例子中,source_device_name 是音频源的名称,sink_device_name 是音频接收端的名称。

3. 路由信息的作用

  • 音频处理:路由信息帮助音频驱动程序确定如何将音频信号在设备间传递,以实现音频播放、录音和混合等功能。
  • 设备配置:通过解析路由信息,音频驱动能够动态配置音频信号的流向,使得用户可以选择不同的输入和输出设备。
  • 音频效果:一些音频处理效果(如混音、回放等)依赖于路由信息,以便在适当的时间将信号发送到正确的接收端。

4. 示例

假设有两个设备,一个麦克风和一个扬声器。它们的路由信息可能如下所示:

"microphone", "speaker"

这表示音频信号从麦克风流向扬声器。在代码实现中,音频驱动会解析这些信息,以便在硬件上设置信号路径。

5. 总结

音频路由信息是音频系统中一个重要的组成部分,理解其含义和功能对于调试和开发音频设备驱动程序至关重要。它定义了音频信号的流向,并确保不同音频组件能够正确交互。

snd_soc_of_parse_audio_routing 函数的详细注释版本,以帮助理解每一部分的功能和逻辑。

 

cCopy Code

int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, const char *propname) { // 获取与音频卡关联的设备树节点 struct device_node *np = card->dev->of_node; int num_routes; // 用于存储音频路由的数量 struct snd_soc_dapm_route *routes; // 指向路由结构体数组的指针 int i, ret; // 循环索引和返回值 // 获取属性中字符串的数量 num_routes = of_property_count_strings(np, propname); // 检查属性是否存在且其长度为偶数(每对 sink 和 source) if (num_routes < 0 || num_routes & 1) { dev_err(card->dev, "ASoC: Property '%s' does not exist or its length is not even\n", propname); return -EINVAL; // 返回无效参数错误 } // 每对 sink 和 source 需要两条字符串,因此除以2 num_routes /= 2; // 检查路由数量是否为零 if (!num_routes) { dev_err(card->dev, "ASoC: Property '%s's length is zero\n", propname); return -EINVAL; // 返回无效参数错误 } // 动态分配内存以存储音频路由结构体 routes = devm_kcalloc(card->dev, num_routes, sizeof(*routes), GFP_KERNEL); if (!routes) { dev_err(card->dev, "ASoC: Could not allocate DAPM route table\n"); return -ENOMEM; // 返回内存不足错误 } // 解析音频路由的 sink 和 source for (i = 0; i < num_routes; i++) { // 读取 sink 字符串 ret = of_property_read_string_index(np, propname, 2 * i, &routes[i].sink); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, 2 * i, ret); return -EINVAL; // 返回无效参数错误 } // 读取 source 字符串 ret = of_property_read_string_index(np, propname, (2 * i) + 1, &routes[i].source); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, (2 * i) + 1, ret); return -EINVAL; // 返回无效参数错误 } } // 更新音频卡结构体中的路由数量和路由信息 card->num_of_dapm_routes = num_routes; card->of_dapm_routes = routes; return 0; // 成功返回0 }

详细注释分析

  1. 结构体和变量初始化

    • struct device_node *np = card->dev->of_node;:获取与当前音频卡相关联的设备树节点。
    • int num_routes;:用于存储音频路由的数量。
    • struct snd_soc_dapm_route *routes;:指向用于存储解析后的音频路由的结构体数组的指针。
    • int i, ret;:用于循环迭代和存储函数返回值。
  2. 计算音频路由数量

    • 使用 of_property_count_strings 函数获取设备树中属性 propname 的字符串数量。音频路由由成对的字符串表示(sink 和 source)。
  3. 验证字符串数量

    • 检查 num_routes 是否小于零(表示属性不存在)或是否为奇数(表示不成对)。如果是,则输出错误信息并返回 -EINVAL
  4. 处理零路由情况

    • 如果 num_routes 除以 2 后为零,则表示没有路由,输出相应错误并返回 -EINVAL
  5. 动态内存分配

    • 使用 devm_kcalloc 动态分配 num_routes 个 snd_soc_dapm_route 结构体的内存。如果分配失败,则输出错误信息并返回 -ENOMEM
  6. 解析路由信息

    • 使用循环逐个读取 sink 和 source 字符串。每个路由的 sink 在设备树中的索引为 2 * i,source 为 (2 * i) + 1
    • 如果读取失败,输出相应的错误信息并返回 -EINVAL
  7. 更新音频卡结构

    • 最后,更新 card->num_of_dapm_routes 和 card->of_dapm_routes 字段,分别表示路由的数量和指向路由数组的指针。
  8. 返回成功

    • 如果所有操作都成功完成,返回 0,表示成功。

总结

通过以上注释,您可以更清晰地了解这个函数的具体功能和逻辑,特别是在设备树解析和音频路由管理方面的实现细节。这对于调试和维护音频设备驱动程序非常重要

瑞芯微设备树中的音频路由

    es8388_sound: es8388-sound {
        status = "okay";
        compatible = "rockchip,multicodecs-card";
        rockchip,card-name = "rockchip-es8388";
        hp-det-gpio = <&gpio1 RK_PD3 GPIO_ACTIVE_HIGH>;
        hp-con-gpio = <&gpio1 RK_PB5 GPIO_ACTIVE_HIGH>;
        io-channels = <&saradc 4>;
        io-channel-names = "adc-detect";
        keyup-threshold-microvolt = <1800000>;
        poll-interval = <100>;
        rockchip,format = "i2s";
        rockchip,mclk-fs = <256>;
        rockchip,cpu = <&i2s0_8ch>;
        rockchip,codec = <&es8388>;
        rockchip,audio-routing =
            "Headphone", "LOUT1",
            "Headphone", "ROUT1",
            "Headphone", "Headphone Power",
            "Headphone", "Headphone Power",
            "LINPUT1", "Main Mic",
            "LINPUT2", "Main Mic",
            "RINPUT1", "Headset Mic",
            "RINPUT2", "Headset Mic";
        pinctrl-names = "default";
        pinctrl-0 = <&hp_det>;
        play-pause-key {
            label = "playpause";
            linux,code = <KEY_PLAYPAUSE>;
            press-threshold-microvolt = <2000>;
        };

        previous-song-key {
            label = "previoussong";
            linux,code = <KEY_PREVIOUSSONG>;
            press-threshold-microvolt = <145000>;
        };

        next-song-key {
            label = "nextsong";
            linux,code = <KEY_NEXTSONG>;
            press-threshold-microvolt = <290000>;
        };
    };
 

在设备树(Device Tree)中,音频路由是定义音频信号在不同音频组件之间传输的关键部分。在您提供的设备树片段中,rockchip,audio-routing 属性列出了音频信号的具体路由配置,以下是对此部分的详细解释:

1. 设备树节点

在您提供的设备树节点 es8388_sound 中,定义了一系列与音频相关的属性,包括状态、兼容性、GPIO 引脚配置、I2S 格式和音频路由信息等。具体而言,rockchip,audio-routing 属性指定了音频信号如何从不同的输入源传递到输出设备。

2. 音频路由解释

rockchip,audio-routing 属性的内容如下:

 

plaintextCopy Code

"Headphone", "LOUT1", "Headphone", "ROUT1", "Headphone", "Headphone Power", "Headphone", "Headphone Power", "LINPUT1", "Main Mic", "LINPUT2", "Main Mic", "RINPUT1", "Headset Mic", "RINPUT2", "Headset Mic";

路由配置说明
  • 每对字符串表示一个连接路径。第一个字符串代表信号源(输入),第二个字符串代表信号接收端(输出)。
  • 这些连接描述了不同的音频组件如何相互交互。例如:
    • "Headphone", "LOUT1" 表示将音频信号从耳机(Headphone)路由到左声道输出(LOUT1)。
    • "Headphone", "ROUT1" 表示将音频信号从耳机路由到右声道输出(ROUT1)。
    • "Headphone", "Headphone Power" 表示耳机音频信号传递到耳机电源,以便为耳机供电。
    • "LINPUT1", "Main Mic" 和 "LINPUT2", "Main Mic" 表示将左声道输入路由到主麦克风。
    • "RINPUT1", "Headset Mic" 和 "RINPUT2", "Headset Mic" 表示将右声道输入路由到耳机麦克风。

3. GPIO 和按键配置

除了音频路由,设备树节点还包括了一些与 GPIO 和按键相关的配置:

  • hp-det-gpio 和 hp-con-gpio 定义了用于耳机检测和连接状态的 GPIO 引脚。这有助于驱动程序判断耳机是否插入,并进行相应的音频路由配置。
  • play-pause-keyprevious-song-key 和 next-song-key 节点定义了相应的按键配置及其阈值。这些按键可以用来控制音频播放的功能。

4. 总结

这个设备树片段定义了如何将音频信号在不同组件之间进行路由,包括耳机、麦克风和音频输出通道等。通过这些路由信息,音频驱动能够正确配置音频信号的流向,从而确保设备能够正常工作并实现所需的音频功能。

相关文章:

[Linux Codec驱动]音频路由概念

1. 音频路由的基本概念 源&#xff08;Source&#xff09;&#xff1a;音频信号的发出方&#xff0c;通常是一个音频输入设备&#xff0c;如麦克风、音频播放设备等。接收端&#xff08;Sink&#xff09;&#xff1a;音频信号的接收方&#xff0c;通常是音频输出设备&#xff…...

母线槽温度监测的哪个部位?安科瑞母线槽测温解决方案-安科瑞黄安南

安科瑞生产厂家&#xff1a;黄安南 壹捌柒/陆壹伍/零陆贰叁柒 母线槽简单来说充当着电缆的角色只不过它是大电流的输送设备&#xff0c;一般是铜排或者绿排做导体&#xff0c;用非烯性绝缘材料做支撑&#xff0c;搭配金属外壳。相对于电缆来说母线槽的载流能力强、电能损耗低、…...

《深度学习》—— 模型的部署

文章目录 一、部署方式二、部署步骤三、注意事项 深度学习中模型的部署是将训练好的模型应用到实际场景中的过程&#xff0c;以下是对深度学习模型部署的详细解析&#xff1a; 一、部署方式 嵌入式设备部署&#xff1a;将深度学习模型部署到嵌入式设备中&#xff0c;如智能手机…...

多IP访问浏览器

添加多个ip地址 nmcli connection modify ens160 ipv4.method manual ipv4.addresses 192.168.61.100/24 ipv4.addresses 192.168.61.200/24 ipv4.addresses 192.168.61.128 ipv4.gateway 192.168.61.2 ipv4.dns 114.114.114.114...

1024程序员节福利放送 | AI 照片修复魔法,一键重拾旧时记忆

程序员充电礼包 今天是 1024 程序员节&#xff0c;小贝特意为大家准备了重磅福利&#xff01;新用户使用邀请码「1024」注册 http://OpenBayes.com&#xff0c;即可获得 20 小时单卡 A6000 的免费使用时长&#xff0c;价值 80 元&#xff0c;资源 1 个月有效。仅限今日&#xf…...

OSPF特殊区域及其他特性

不用的链路这状态信息没必要一直保存&#xff0c;要不路由器承受不了。用OSPF 特殊区域解决 1. Stub区域和Totally Stub区域 R1作为ASBR引入多个外部网段&#xff0c;如果Area 2是普通区域&#xff0c;则R3将向该区域注入5类和4类LSA。 当把Area 2配置为Stub区域后&#xff1a…...

动态量化:大模型在端侧CPU快速推理方案

作为一款高性能的推理引擎框架&#xff0c;MNN高度关注Transformer模型在移动端的部署并持续探索优化大模型在端侧的推理方案。本文介绍权重量化的模型在MNN CPU后端的推理方案&#xff1a;动态量化。动态量化指在运行时对浮点型feature map数据进行8bit量化&#xff0c;然后与…...

什么是零拷贝以及其应用场景是什么?

写在前面 本文看下什么是零拷贝&#xff0c;以及其具体的应用场景有哪些。 1&#xff1a;什么是零拷贝 想要解释清楚什么是零拷贝&#xff0c;需要先来看下常规的阻塞io一次io的过程&#xff0c;这里以从文件读取内容然后写到socket为例来看下&#xff0c;如下&#xff1a; …...

开源(open source)是什么?为什么要开源?

为什么开源这个问题挺复杂&#xff0c;这里就从社会面以及个人两个角度来说。当然个人层面的开源其实是建立在社会面形成开源氛围后开始的。 社会面开源 这里举一个例子&#xff0c;既互联网从 web1.0 到 web3.0 &#xff08;开源 → 闭源 → 再开源&#xff09;的历程&#…...

基于Spring Boot的论坛网站:从零到部署

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常…...

vue开发的一个小插件vue.js devtools

可打开谷歌商城的情况下&#xff0c;不可打开的可以到极简插件里面去下载 极简插件官网_Chrome插件下载_Chrome浏览器应用商店 搜索vue即可...

GraphLLM:基于图的框架,通过大型语言模型处理数据

GraphLLM是一个创新的框架&#xff0c;它允许用户通过一个或多个大型语言模型&#xff08;LLM&#xff09;来处理数据。这个框架不仅提供了一个强大的代理&#xff0c;能够执行网络搜索和运行Python代码&#xff0c;还提供了一套工具来抓取网页数据&#xff0c;并将其重新格式化…...

HarmonyOS 5.0应用开发——Navigation实现页面路由

【高心星出品】 Navigation实现页面路由 Navigation&#xff1a;路由导航的根视图容器&#xff0c;一般作为页面&#xff08;Entry&#xff09;的根容器去使用&#xff0c;包括单页面&#xff08;stack&#xff09;、分栏&#xff08;split&#xff09;和自适应&#xff08;a…...

物联网行业应用实训室建设方案

一、建设背景 随着物联网技术的迅猛发展和广泛应用&#xff0c;物联网产业已跃升为新时代的经济增长引擎&#xff0c;对于产业升级和社会信息化水平的提升具有举足轻重的地位。因此&#xff0c;为了满足这一领域的迫切需求&#xff0c;培养具备物联网技术应用能力的优秀人才成…...

SOLIDWORKS 2025更灵活零件建模

SOLIDWORKS 2025更灵活零件建模 北京众联亿诚是达索官方授权的SOLIDWORKS经销商&#xff0c;专业经销SOLIDWORKS正版软件并提供免费试用、培训认证、二次开发等增值服务。 在工程设计领域&#xff0c;SOLIDWORKS作为一款功能强大的三维CAD软件&#xff0c;一直以其优越的性能…...

智能巡检机器人的大模型训练

随着工业自动化和智能化进程的不断加快&#xff0c;智能巡检机器人已成为维护和管理复杂设备的重要工具。在电力、石油化工、煤矿、数据中心等行业中&#xff0c;智能巡检机器人通过自主巡检、故障检测等功能&#xff0c;提高了设备管理的效率和安全性。大模型训练在智能巡检机…...

RabbitMQ系列学习笔记(九)--路由模式

文章目录 一、路由模式原理二、多重绑定三、路由模式实战1、消费者代码2、生产者代码3、运行结果分析 本文参考 尚硅谷RabbitMQ教程丨快速掌握MQ消息中间件rabbitmq RabbitMQ 详解 Centos7环境安装Erlang、RabbitMQ详细过程(配图) 一、路由模式原理 使用发布订阅模式时&#x…...

[OS] pthreads-1

线程的基本概念 线程是进程中的一个单一的执行流。一个进程可以包含多个线程&#xff0c;这些线程共享进程中的资源&#xff0c;并且在相同的地址空间中执行。多线程是提高应用程序并行性的流行方法。例如&#xff0c;在浏览器中&#xff0c;不同的标签页可以视作独立的线程。…...

ThreeJS入门(137):THREE.StringKeyframeTrack 知识详解,示例代码

作者&#xff1a; 还是大剑师兰特 &#xff0c;曾为美国某知名大学计算机专业研究生&#xff0c;现为国内GIS领域高级前端工程师&#xff0c;CSDN知名博主&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;webgl&#xff0c;ThreeJS&#xff0c;canvas&#xf…...

用大模型或者向量模型比如huggingface上的模型,处理一批图片,对该图片进行分类,检索

要使用大模型或向量模型对图片进行分类和检索,通常可以采用以下几种方法: 1. **图像分类**:使用预训练的图像分类模型(如ResNet、EfficientNet等)对图片进行分类。 2. **图像特征提取**:使用预训练的模型(如CLIP、ResNet等)提取图像的特征向量,然后进行相似度检索。 …...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...