[Linux Codec驱动]音频路由概念
1. 音频路由的基本概念
- 源(Source):音频信号的发出方,通常是一个音频输入设备,如麦克风、音频播放设备等。
- 接收端(Sink):音频信号的接收方,通常是音频输出设备,如扬声器、耳机等。
- 路由(Routing):指音频信号从源到接收端的路径。在音频驱动中,路由信息定义了哪些源和接收端是相互连接的。
2. 音频路由的信息格式
在音频驱动中,路由信息通常在设备树(Device Tree)中以字符串形式定义。这些字符串成对出现,分别表示源和接收端。例如:
"source_device_name", "sink_device_name"
在这个例子中,source_device_name
是音频源的名称,sink_device_name
是音频接收端的名称。
3. 路由信息的作用
- 音频处理:路由信息帮助音频驱动程序确定如何将音频信号在设备间传递,以实现音频播放、录音和混合等功能。
- 设备配置:通过解析路由信息,音频驱动能够动态配置音频信号的流向,使得用户可以选择不同的输入和输出设备。
- 音频效果:一些音频处理效果(如混音、回放等)依赖于路由信息,以便在适当的时间将信号发送到正确的接收端。
4. 示例
假设有两个设备,一个麦克风和一个扬声器。它们的路由信息可能如下所示:
"microphone", "speaker"
这表示音频信号从麦克风流向扬声器。在代码实现中,音频驱动会解析这些信息,以便在硬件上设置信号路径。
5. 总结
音频路由信息是音频系统中一个重要的组成部分,理解其含义和功能对于调试和开发音频设备驱动程序至关重要。它定义了音频信号的流向,并确保不同音频组件能够正确交互。
snd_soc_of_parse_audio_routing
函数的详细注释版本,以帮助理解每一部分的功能和逻辑。
cCopy Code
int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, const char *propname) { // 获取与音频卡关联的设备树节点 struct device_node *np = card->dev->of_node; int num_routes; // 用于存储音频路由的数量 struct snd_soc_dapm_route *routes; // 指向路由结构体数组的指针 int i, ret; // 循环索引和返回值 // 获取属性中字符串的数量 num_routes = of_property_count_strings(np, propname); // 检查属性是否存在且其长度为偶数(每对 sink 和 source) if (num_routes < 0 || num_routes & 1) { dev_err(card->dev, "ASoC: Property '%s' does not exist or its length is not even\n", propname); return -EINVAL; // 返回无效参数错误 } // 每对 sink 和 source 需要两条字符串,因此除以2 num_routes /= 2; // 检查路由数量是否为零 if (!num_routes) { dev_err(card->dev, "ASoC: Property '%s's length is zero\n", propname); return -EINVAL; // 返回无效参数错误 } // 动态分配内存以存储音频路由结构体 routes = devm_kcalloc(card->dev, num_routes, sizeof(*routes), GFP_KERNEL); if (!routes) { dev_err(card->dev, "ASoC: Could not allocate DAPM route table\n"); return -ENOMEM; // 返回内存不足错误 } // 解析音频路由的 sink 和 source for (i = 0; i < num_routes; i++) { // 读取 sink 字符串 ret = of_property_read_string_index(np, propname, 2 * i, &routes[i].sink); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, 2 * i, ret); return -EINVAL; // 返回无效参数错误 } // 读取 source 字符串 ret = of_property_read_string_index(np, propname, (2 * i) + 1, &routes[i].source); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, (2 * i) + 1, ret); return -EINVAL; // 返回无效参数错误 } } // 更新音频卡结构体中的路由数量和路由信息 card->num_of_dapm_routes = num_routes; card->of_dapm_routes = routes; return 0; // 成功返回0 }
详细注释分析
-
结构体和变量初始化:
struct device_node *np = card->dev->of_node;
:获取与当前音频卡相关联的设备树节点。int num_routes;
:用于存储音频路由的数量。struct snd_soc_dapm_route *routes;
:指向用于存储解析后的音频路由的结构体数组的指针。int i, ret;
:用于循环迭代和存储函数返回值。
-
计算音频路由数量:
- 使用
of_property_count_strings
函数获取设备树中属性propname
的字符串数量。音频路由由成对的字符串表示(sink 和 source)。
- 使用
-
验证字符串数量:
- 检查
num_routes
是否小于零(表示属性不存在)或是否为奇数(表示不成对)。如果是,则输出错误信息并返回-EINVAL
。
- 检查
-
处理零路由情况:
- 如果
num_routes
除以 2 后为零,则表示没有路由,输出相应错误并返回-EINVAL
。
- 如果
-
动态内存分配:
- 使用
devm_kcalloc
动态分配num_routes
个snd_soc_dapm_route
结构体的内存。如果分配失败,则输出错误信息并返回-ENOMEM
。
- 使用
-
解析路由信息:
- 使用循环逐个读取 sink 和 source 字符串。每个路由的 sink 在设备树中的索引为
2 * i
,source 为(2 * i) + 1
。 - 如果读取失败,输出相应的错误信息并返回
-EINVAL
。
- 使用循环逐个读取 sink 和 source 字符串。每个路由的 sink 在设备树中的索引为
-
更新音频卡结构:
- 最后,更新
card->num_of_dapm_routes
和card->of_dapm_routes
字段,分别表示路由的数量和指向路由数组的指针。
- 最后,更新
-
返回成功:
- 如果所有操作都成功完成,返回 0,表示成功。
总结
通过以上注释,您可以更清晰地了解这个函数的具体功能和逻辑,特别是在设备树解析和音频路由管理方面的实现细节。这对于调试和维护音频设备驱动程序非常重要
瑞芯微设备树中的音频路由
es8388_sound: es8388-sound {
status = "okay";
compatible = "rockchip,multicodecs-card";
rockchip,card-name = "rockchip-es8388";
hp-det-gpio = <&gpio1 RK_PD3 GPIO_ACTIVE_HIGH>;
hp-con-gpio = <&gpio1 RK_PB5 GPIO_ACTIVE_HIGH>;
io-channels = <&saradc 4>;
io-channel-names = "adc-detect";
keyup-threshold-microvolt = <1800000>;
poll-interval = <100>;
rockchip,format = "i2s";
rockchip,mclk-fs = <256>;
rockchip,cpu = <&i2s0_8ch>;
rockchip,codec = <&es8388>;
rockchip,audio-routing =
"Headphone", "LOUT1",
"Headphone", "ROUT1",
"Headphone", "Headphone Power",
"Headphone", "Headphone Power",
"LINPUT1", "Main Mic",
"LINPUT2", "Main Mic",
"RINPUT1", "Headset Mic",
"RINPUT2", "Headset Mic";
pinctrl-names = "default";
pinctrl-0 = <&hp_det>;
play-pause-key {
label = "playpause";
linux,code = <KEY_PLAYPAUSE>;
press-threshold-microvolt = <2000>;
};
previous-song-key {
label = "previoussong";
linux,code = <KEY_PREVIOUSSONG>;
press-threshold-microvolt = <145000>;
};
next-song-key {
label = "nextsong";
linux,code = <KEY_NEXTSONG>;
press-threshold-microvolt = <290000>;
};
};
在设备树(Device Tree)中,音频路由是定义音频信号在不同音频组件之间传输的关键部分。在您提供的设备树片段中,rockchip,audio-routing
属性列出了音频信号的具体路由配置,以下是对此部分的详细解释:
1. 设备树节点
在您提供的设备树节点 es8388_sound
中,定义了一系列与音频相关的属性,包括状态、兼容性、GPIO 引脚配置、I2S 格式和音频路由信息等。具体而言,rockchip,audio-routing
属性指定了音频信号如何从不同的输入源传递到输出设备。
2. 音频路由解释
rockchip,audio-routing
属性的内容如下:
plaintextCopy Code
"Headphone", "LOUT1", "Headphone", "ROUT1", "Headphone", "Headphone Power", "Headphone", "Headphone Power", "LINPUT1", "Main Mic", "LINPUT2", "Main Mic", "RINPUT1", "Headset Mic", "RINPUT2", "Headset Mic";
路由配置说明
- 每对字符串表示一个连接路径。第一个字符串代表信号源(输入),第二个字符串代表信号接收端(输出)。
- 这些连接描述了不同的音频组件如何相互交互。例如:
"Headphone", "LOUT1"
表示将音频信号从耳机(Headphone)路由到左声道输出(LOUT1)。"Headphone", "ROUT1"
表示将音频信号从耳机路由到右声道输出(ROUT1)。"Headphone", "Headphone Power"
表示耳机音频信号传递到耳机电源,以便为耳机供电。"LINPUT1", "Main Mic"
和"LINPUT2", "Main Mic"
表示将左声道输入路由到主麦克风。"RINPUT1", "Headset Mic"
和"RINPUT2", "Headset Mic"
表示将右声道输入路由到耳机麦克风。
3. GPIO 和按键配置
除了音频路由,设备树节点还包括了一些与 GPIO 和按键相关的配置:
hp-det-gpio
和hp-con-gpio
定义了用于耳机检测和连接状态的 GPIO 引脚。这有助于驱动程序判断耳机是否插入,并进行相应的音频路由配置。play-pause-key
、previous-song-key
和next-song-key
节点定义了相应的按键配置及其阈值。这些按键可以用来控制音频播放的功能。
4. 总结
这个设备树片段定义了如何将音频信号在不同组件之间进行路由,包括耳机、麦克风和音频输出通道等。通过这些路由信息,音频驱动能够正确配置音频信号的流向,从而确保设备能够正常工作并实现所需的音频功能。
相关文章:
[Linux Codec驱动]音频路由概念
1. 音频路由的基本概念 源(Source):音频信号的发出方,通常是一个音频输入设备,如麦克风、音频播放设备等。接收端(Sink):音频信号的接收方,通常是音频输出设备ÿ…...

母线槽温度监测的哪个部位?安科瑞母线槽测温解决方案-安科瑞黄安南
安科瑞生产厂家:黄安南 壹捌柒/陆壹伍/零陆贰叁柒 母线槽简单来说充当着电缆的角色只不过它是大电流的输送设备,一般是铜排或者绿排做导体,用非烯性绝缘材料做支撑,搭配金属外壳。相对于电缆来说母线槽的载流能力强、电能损耗低、…...
《深度学习》—— 模型的部署
文章目录 一、部署方式二、部署步骤三、注意事项 深度学习中模型的部署是将训练好的模型应用到实际场景中的过程,以下是对深度学习模型部署的详细解析: 一、部署方式 嵌入式设备部署:将深度学习模型部署到嵌入式设备中,如智能手机…...

多IP访问浏览器
添加多个ip地址 nmcli connection modify ens160 ipv4.method manual ipv4.addresses 192.168.61.100/24 ipv4.addresses 192.168.61.200/24 ipv4.addresses 192.168.61.128 ipv4.gateway 192.168.61.2 ipv4.dns 114.114.114.114...

1024程序员节福利放送 | AI 照片修复魔法,一键重拾旧时记忆
程序员充电礼包 今天是 1024 程序员节,小贝特意为大家准备了重磅福利!新用户使用邀请码「1024」注册 http://OpenBayes.com,即可获得 20 小时单卡 A6000 的免费使用时长,价值 80 元,资源 1 个月有效。仅限今日…...

OSPF特殊区域及其他特性
不用的链路这状态信息没必要一直保存,要不路由器承受不了。用OSPF 特殊区域解决 1. Stub区域和Totally Stub区域 R1作为ASBR引入多个外部网段,如果Area 2是普通区域,则R3将向该区域注入5类和4类LSA。 当把Area 2配置为Stub区域后:…...

动态量化:大模型在端侧CPU快速推理方案
作为一款高性能的推理引擎框架,MNN高度关注Transformer模型在移动端的部署并持续探索优化大模型在端侧的推理方案。本文介绍权重量化的模型在MNN CPU后端的推理方案:动态量化。动态量化指在运行时对浮点型feature map数据进行8bit量化,然后与…...

什么是零拷贝以及其应用场景是什么?
写在前面 本文看下什么是零拷贝,以及其具体的应用场景有哪些。 1:什么是零拷贝 想要解释清楚什么是零拷贝,需要先来看下常规的阻塞io一次io的过程,这里以从文件读取内容然后写到socket为例来看下,如下: …...
开源(open source)是什么?为什么要开源?
为什么开源这个问题挺复杂,这里就从社会面以及个人两个角度来说。当然个人层面的开源其实是建立在社会面形成开源氛围后开始的。 社会面开源 这里举一个例子,既互联网从 web1.0 到 web3.0 (开源 → 闭源 → 再开源)的历程&#…...

基于Spring Boot的论坛网站:从零到部署
2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...

vue开发的一个小插件vue.js devtools
可打开谷歌商城的情况下,不可打开的可以到极简插件里面去下载 极简插件官网_Chrome插件下载_Chrome浏览器应用商店 搜索vue即可...

GraphLLM:基于图的框架,通过大型语言模型处理数据
GraphLLM是一个创新的框架,它允许用户通过一个或多个大型语言模型(LLM)来处理数据。这个框架不仅提供了一个强大的代理,能够执行网络搜索和运行Python代码,还提供了一套工具来抓取网页数据,并将其重新格式化…...

HarmonyOS 5.0应用开发——Navigation实现页面路由
【高心星出品】 Navigation实现页面路由 Navigation:路由导航的根视图容器,一般作为页面(Entry)的根容器去使用,包括单页面(stack)、分栏(split)和自适应(a…...

物联网行业应用实训室建设方案
一、建设背景 随着物联网技术的迅猛发展和广泛应用,物联网产业已跃升为新时代的经济增长引擎,对于产业升级和社会信息化水平的提升具有举足轻重的地位。因此,为了满足这一领域的迫切需求,培养具备物联网技术应用能力的优秀人才成…...
SOLIDWORKS 2025更灵活零件建模
SOLIDWORKS 2025更灵活零件建模 北京众联亿诚是达索官方授权的SOLIDWORKS经销商,专业经销SOLIDWORKS正版软件并提供免费试用、培训认证、二次开发等增值服务。 在工程设计领域,SOLIDWORKS作为一款功能强大的三维CAD软件,一直以其优越的性能…...

智能巡检机器人的大模型训练
随着工业自动化和智能化进程的不断加快,智能巡检机器人已成为维护和管理复杂设备的重要工具。在电力、石油化工、煤矿、数据中心等行业中,智能巡检机器人通过自主巡检、故障检测等功能,提高了设备管理的效率和安全性。大模型训练在智能巡检机…...

RabbitMQ系列学习笔记(九)--路由模式
文章目录 一、路由模式原理二、多重绑定三、路由模式实战1、消费者代码2、生产者代码3、运行结果分析 本文参考 尚硅谷RabbitMQ教程丨快速掌握MQ消息中间件rabbitmq RabbitMQ 详解 Centos7环境安装Erlang、RabbitMQ详细过程(配图) 一、路由模式原理 使用发布订阅模式时&#x…...
[OS] pthreads-1
线程的基本概念 线程是进程中的一个单一的执行流。一个进程可以包含多个线程,这些线程共享进程中的资源,并且在相同的地址空间中执行。多线程是提高应用程序并行性的流行方法。例如,在浏览器中,不同的标签页可以视作独立的线程。…...

ThreeJS入门(137):THREE.StringKeyframeTrack 知识详解,示例代码
作者: 还是大剑师兰特 ,曾为美国某知名大学计算机专业研究生,现为国内GIS领域高级前端工程师,CSDN知名博主,深耕openlayers、leaflet、mapbox、cesium,webgl,ThreeJS,canvas…...
用大模型或者向量模型比如huggingface上的模型,处理一批图片,对该图片进行分类,检索
要使用大模型或向量模型对图片进行分类和检索,通常可以采用以下几种方法: 1. **图像分类**:使用预训练的图像分类模型(如ResNet、EfficientNet等)对图片进行分类。 2. **图像特征提取**:使用预训练的模型(如CLIP、ResNet等)提取图像的特征向量,然后进行相似度检索。 …...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...