基于NERF技术重建学习笔记
NeRF(Neural Radiance Fields)是一种用于3D场景重建的神经网络模型,能够从2D图像生成逼真的3D渲染效果。它将场景表征为一个连续的5D函数,利用了体积渲染和神经网络的结合,通过学习光线穿过空间时的颜色和密度来重建场景。以下是NeRF的原理和数据流程总结:
(1)原理
3D场景表示为隐函数:NeRF的核心思想是将3D场景表示为一个隐式的神经网络模型。具体来说,它将空间中的每个点 (x,y,z) 的颜色和密度作为函数输出。给定一个输入的3D坐标和观察方向,NeRF通过神经网络预测该点的RGB颜色 (r,g,b) 和体积密度 σ。
体积渲染(Volumetric Rendering):NeRF使用体积渲染公式将这些颜色和密度组合在一起,生成最终的2D图像。具体步骤是模拟光线在3D空间中的传播,通过沿着光线采样多个点的颜色和密度,对这些点进行加权平均来计算最终的像素颜色。公式如下:
视角一致性:NeRF的一个优势在于,它能够学习到场景的3D结构和细节,并生成不同视角下的真实感图像。通过训练,NeRF可以从少量的2D视角图像中推断出整个场景的3D形状和材质。
(2)数据流程
-
输入数据:
- 2D图像:NeRF通常从多张从不同视角拍摄的2D图像开始,这些图像可以是从一个静态场景中拍摄的。
- 相机参数:每张2D图像都需要知道相应的相机参数(如位姿、焦距等),以确定光线的方向。
-
光线采样:对于每个像素,NeRF通过相机位姿计算出光线方向,并在光线上均匀采样多个点。每个点的3D坐标(x,y,z) 和光线方向 d作为输入喂给NeRF模型。
-
神经网络预测:
- 神经网络接收每个采样点的3D坐标和光线方向,并输出该点的RGB颜色(r,g,b) 和体积密度 σ。
- 这些输出值用于对每条光线的颜色进行体积渲染。
-
体积渲染:NeRF将所有采样点的颜色和密度结合起来,计算出每条光线的最终像素颜色,进而生成图像。
-
损失函数和优化:NeRF生成的2D图像与真实输入图像进行比较,通过均方误差(MSE)损失来优化神经网络权重。训练的目标是最小化生成图像和实际图像之间的差异,使得NeRF能够准确地重建3D场景。
(3)训练过程
NeRF 在训练时的输入确实是每个3D空间点的坐标(x,y,z) 和光线方向 ddd,对应的输出是该点的颜色(RGB)和体积密度 σ。为了理解这些输入数据如何生成以及训练过程中的模型真值(ground truth)是什么,我们可以从数据处理的流程和目标损失函数的角度来探讨。
》数据生成过程
-
相机参数和图像采集:
- NeRF 的输入来自多张从不同角度拍摄的 2D 图像。每张图像伴随的相机内外参(内参:焦距、传感器尺寸,外参:相机位置和朝向)用来确定图像中每个像素射线的出发点和方向。
- 这些相机参数将帮助我们确定每条光线的方向 d,并能够从图像中的像素位置推算出光线在3D空间中的位置。
-
光线采样:
- 对于每张图像,NeRF 会从相机光心发射出一条条光线,每条光线对应图像中的一个像素。通过相机外参可以计算出每条光线的方向 d,并沿着光线均匀采样多个3D坐标点(x,y,z)。
- 每条光线通常采样几十个点。通过这些点的坐标 (x,y,z) 和光线方向 d,这些信息被输入到NeRF的神经网络中进行颜色和密度的预测。
》模型的真值(Ground Truth)
NeRF 的训练目标是从3D坐标和光线方向预测出每条光线上的颜色(即对应图像中的像素值)。模型的真值为:
-
真值颜色:
- 每条光线最终射入相机的那一部分颜色信息就是真值。在2D图像中,光线的最终颜色是该光线在3D场景中穿过的所有点的颜色与体积密度的加权平均。每条光线的最终颜色值 C(r) 对应图像中的某个像素值。
- 因此,真值颜色就是每张图像中像素的真实RGB值,这些像素值可以直接从输入的2D图像中获得。
-
体积渲染公式:
- NeRF 使用体积渲染公式来合成沿光线的颜色:
通过这种体积渲染计算,NeRF 合成出预测的光线颜色,然后通过与该光线在真实图像中的像素颜色进行对比,来计算损失。
》损失函数
在训练过程中,NeRF 使用的损失函数通常是均方误差(MSE)损失,来衡量模型预测的颜色与真实图像中对应像素颜色之间的差异:
(4)与其他建图方式相比
NeRF(Neural Radiance Fields) 和 V-SLAM、激光SLAM 都涉及到场景的重建与感知,但它们的目标、方法和应用场景有显著的区别。
维度 | NeRF | V-SLAM | 激光SLAM |
---|---|---|---|
核心目标 | 高质量3D场景渲染与重建 | 实时定位与2D/3D地图构建 | 实时定位与精确地图构建 |
输入数据 | 多视角2D图像及相机参数 | 单目/双目/RGB-D相机图像 | 激光雷达点云或距离数据 |
精度 | 高,适用于小规模、静态、细节丰富场景 | 中等,取决于光照和特征丰富度 | 高,适用于大规模、复杂环境的精确定位和建图 |
实时性 | 计算量大,通常离线运行 | 可实时运行,依赖图像处理 | 高效实时,特别适合大规模场景 |
环境适应性 | 静态场景,光照变化大或动态场景表现差 | 依赖光照和视觉特征,动态物体影响大 | 适应性强,几乎不受光照和环境特征影响 |
计算成本 | 高,需高性能硬件 | 中等,图像处理计算量大但硬件成本低 | 中等,硬件成本高但计算需求较低 |
应用场景 | 虚拟现实、3D建模、影视制作 | 移动机器人、无人机、AR/VR | 自动驾驶、工业机器人、仓储导航 |
相关文章:

基于NERF技术重建学习笔记
NeRF(Neural Radiance Fields)是一种用于3D场景重建的神经网络模型,能够从2D图像生成逼真的3D渲染效果。它将场景表征为一个连续的5D函数,利用了体积渲染和神经网络的结合,通过学习光线穿过空间时的颜色和密度来重建场…...
webView 支持全屏播放
webView 支持全屏播放 直接上代码 public class CustomFullScreenWebViewClient extends WebChromeClient {WebView webView;Context context;/*** 视频全屏参数*/protected static final FrameLayout.LayoutParams COVER_SCREEN_PARAMS new FrameLayout.LayoutParams(ViewG…...

QGIS之三十二DEM地形导出三维模型gltf
效果 1、准备数据 (1)dem.tif (2)dom.tif 2、qgis加载dem和dom数据 3、安装插件 插件步骤可以参考这篇文章 QGIS之二十四安装插件 安装了Qgis2threejs插件,结果...

【python爬虫】携程旅行景点游客数据分析与可视化
一.选题背景 随着旅游业的快速发展,越来越多的人选择通过互联网平台预订旅行产品,其中携程网作为国内领先的在线旅行服务提供商,拥有大量的旅游产品和用户数据。利用爬虫技术可以获取携程网上各个景点的游客数据,包括游客数量、游…...

python实现onvif协议下控制摄像头变焦,以及融合人形识别与跟踪控制
#1024程序员节 | 征文# 这两天才因为项目需要,对网络摄像头的视频采集以及实现人形识别与跟踪技术。对于onvif协议自然起先也没有任何的了解。但是购买的摄像头是SONY网络头是用在其他地方的。因为前期支持探究项目解决方案,就直接拿来做demo测试使用。 …...

【Vue】Vue3.0(十四)接口,泛型和自定义类型的概念及使用
上篇文章: 【Vue】Vue3.0(十三)中标签属性ref(加在普通标签上、加在组件标签上)、局部样式 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间&…...

【C++】红黑树万字详解(一文彻底搞懂红黑树的底层逻辑)
目录 00.引入 01.红黑树的性质 02.红黑树的定义 03.红黑树的插入 1.按照二叉搜索树的规则插入新节点 2.检测新节点插入后,是否满足红黑树的性质 1.uncle节点存在且为红色 2.uncle节点不存在 3.uncle节点存在且为黑色 04.验证红黑树 00.引入 和AVL树一样&am…...
开源FluentFTP实操,操控FTP文件
概述:通过FluentFTP库,轻松在.NET中实现FTP功能。支持判断、创建、删除文件夹,判断文件是否存在,实现上传、下载和删除文件。简便而强大的FTP操作,提升文件传输效率。 在.NET中,使用FluentFTP库可以方便地…...

论文解读 | ECCV2024 AutoEval-Video:一个用于评估大型视觉-语言模型在开放式视频问答中的自动基准测试...
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者讲解回放! 作者简介 陈修元,上海交通大学清源研究院硕士生 概述 总结来说,我们提出了一个新颖且具有挑战性的基准测试AutoEvalVideo,用于全…...

postgresql14主从同步流复制搭建
1. 如果使用docker搭建请移步 Docker 启动 PostgreSQL 主从架构:实现数据同步的高效部署指南_docker安装postgresql主从同步-CSDN博客 2. 背景 pgsql版本:PostgreSQL 14.13 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4…...

企业信息化管理中的数据集成方案:销售出库单对接
企业信息化管理中的数据集成方案:销售出库单对接 销售出库单旺店通→金蝶:高效数据集成案例分享 在企业信息化管理中,数据的高效流动和准确对接是实现业务流程自动化的关键。本文将聚焦于一个具体的系统对接集成案例:如何将旺店通…...

3.cpp基本数据类型
cpp基本数据类型 1.cpp基本数据类型 1.cpp基本数据类型 C基本数据类型和C语言的基本数据类型差不多 注意bool类型:存储真值 true 或假值 false,C语言编译器C99以上支持。 C语言的bool类型:要添加 #include <stdbool.h>头文件 #includ…...

MCK主机加固与防漏扫的深度解析
在当今这个信息化飞速发展的时代,网络安全成为了企业不可忽视的重要议题。漏洞扫描,简称漏扫,是一种旨在发现计算机系统、网络或应用程序中潜在安全漏洞的技术手段。通过自动化工具,漏扫能够识别出系统中存在的已知漏洞࿰…...

《软件估算之原始功能点:精准度量软件规模的关键》
《软件估算之原始功能点:精准度量软件规模的关键》 一、软件估算的重要性与方法概述二、原始功能点的构成要素(一)数据功能(二)事务功能 三、原始功能点的估算方法(一)功能点分类估算࿰…...
序列化与反序列化
序列化和反序列化是数据处理中的两个重要概念,它们在多种场景下都非常有用,尤其是在分布式系统、网络通信、持久化存储等方面。下面是对这两个概念的详细解释: 序列化(Serialization) 定义:序列化是将对象…...

安装nginx实现多ip访问多网站
[rootlocalhost ~]# systemctl stop firewalld 关防火墙 [rootlocalhost ~]# setenforce 0 关selinux [rootlocalhost ~]# mount /dev/sr0 /mnt 挂载点 [rootlocalhost ~]# dnf install nginx -y 安装nginx [rootlocalhost ~]# nmtui 当前主机添加多地址 [rootlocal…...

每日回顾:简单用C写 冒泡排序、快速排序
冒泡排序 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复进行直到没有再需要交换,也就是说该数列已…...
前端_007_Axios库
文章目录 配置响应结构拦截器 引入: 官网: https://www.axios-http.cn/ 一句话简介:浏览器里基于XmlHttpRequests,node.js里基于http模块封装的网络请求库,使用非常方便 //通用例子axios({method:post,url: request…...

NAND FLASH 与 SPI FLASH
面试的时候再有HR针对从数据手册开始做,直接说明:例如RK3588等高速板设计板都有设计指导书,基本把对应的DDR等型号和布局规范都说明,或者DCDC电路直接给一个典型设计原理图,或者BMS更加经典,原理图给的是最…...

QTCreator打不开双击没反应
问题描述 双击后进程里显示有,当过几秒直接消失 解决 找到C\用户\AppData\Roaming\QtProject,删除目录下QtCreator.ini文件(这会重置QtCreator的默认设置),再打开QtCreator时会自动生成对应于默认设置的QtCreator.ini文件&…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...

Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...

【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...

NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...