导出BERT句子模型为ONNX并推理
在深度学习中,将模型导出为ONNX(Open Neural Network Exchange)格式并利用ONNX进行推理是提高推理速度和模型兼容性的一种常见做法。本文将介绍如何将BERT句子模型导出为ONNX格式,并使用ONNX Runtime进行推理,具体以中文文本处理为例。
1. 什么是ONNX?
ONNX 是一种开放的神经网络交换格式,旨在促进深度学习模型在不同平台和工具之间的共享和移植。它支持包括PyTorch、TensorFlow等多种主流框架,可以通过ONNX Runtime库高效推理。通过将模型转换为ONNX格式,我们可以获得跨平台部署的优势,并利用ONNX Runtime加速推理过程。
2. 准备工作
在导出和推理之前,需要安装以下库:
pip install torch transformers onnx onnxruntime
3. 导出BERT句子模型为ONNX
首先,我们将使用HuggingFace的transformers库加载一个预训练的BERT句子模型(text2vec-base-chinese),然后将其导出为ONNX格式。以下是导出模型的步骤和代码:
3.1 导出模型的代码
import torch
from transformers import BertTokenizer, BertModel# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')# 读取要处理的句子
with open("corpus/words_nlu.txt", 'rt', encoding='utf-8') as f:nlu_words = [line.strip() for line in f.readlines()]
nlu_words.insert(0, "摄像头打开一下")  # 插入要比较的句子# 对句子进行编码
encoded_input = tokenizer(nlu_words, padding=True, truncation=True, return_tensors='pt')# 设置ONNX模型的保存路径
onnx_model_path = "text2vec-base-chinese.onnx"
model.eval()# 导出模型为ONNX格式
with torch.no_grad():torch.onnx.export(model,(encoded_input['input_ids'], encoded_input['attention_mask']),onnx_model_path,input_names=['input_ids', 'attention_mask'],output_names=['last_hidden_state'],opset_version=14,dynamic_axes={'input_ids': {0: 'batch_size', 1: 'sequence_length'},'attention_mask': {0: 'batch_size', 1: 'sequence_length'},'last_hidden_state': {0: 'batch_size', 1: 'sequence_length'}})
print(f"ONNX模型已导出到 {onnx_model_path}")
在这段代码中,我们将text2vec-base-chinese模型导出为ONNX格式,指定了输入和输出的名称,并使用了动态轴设置(如批大小和序列长度),这样可以处理不同长度的句子。
4. 使用ONNX进行推理
导出模型后,我们可以使用ONNX Runtime进行推理。以下是基于ONNX的推理代码。该代码实现了对输入文本进行预处理、调用ONNX模型进行推理、以及对模型输出进行均值池化处理。
4.1 ONNX推理代码
import numpy as np
from onnxruntime import InferenceSessionclass PIPE_NLU:def __init__(self, model_path="text2vec-base-chinese.onnx", vocab_path="vocab.txt") -> None:self.model_path = model_pathself.vocab_path = vocab_pathself.vocab = self.load_vocab(vocab_path)self.onnx_session = InferenceSession(model_path)print("成功加载NLU解码器")def load_vocab(self, vocab_path):"""加载BERT词汇表"""vocab = {}with open(vocab_path, 'r', encoding='utf-8') as f:for idx, line in enumerate(f):token = line.strip()vocab[token] = idxreturn vocabdef tokenize(self, text):"""将文本分词为BERT的input_ids"""tokens = ['[CLS]']for char in text:if char in self.vocab:tokens.append(char)else:tokens.append('[UNK]')tokens.append('[SEP]')input_ids = [self.vocab[token] if token in self.vocab else self.vocab['[UNK]'] for token in tokens]return input_idsdef preprocess(self, texts, max_length=128):"""对输入文本进行预处理"""input_ids_list = []attention_mask_list = []for text in texts:input_ids = self.tokenize(text)if len(input_ids) > max_length:input_ids = input_ids[:max_length]else:input_ids += [0] * (max_length - len(input_ids))attention_mask = [1 if idx != 0 else 0 for idx in input_ids]input_ids_list.append(input_ids)attention_mask_list.append(attention_mask)inputs = {'input_ids': np.array(input_ids_list, dtype=np.int64),'attention_mask': np.array(attention_mask_list, dtype=np.int64)}return inputsdef mean_pooling_numpy(self, model_output, attention_mask):"""对模型输出进行均值池化"""token_embeddings = model_outputinput_mask_expanded = np.expand_dims(attention_mask, -1).astype(float)return np.sum(token_embeddings * input_mask_expanded, axis=1) / np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None)def compute_embeddings(self, texts):"""计算输入文本的句子嵌入"""onnx_inputs = self.preprocess(texts)onnx_outputs = self.onnx_session.run(None, onnx_inputs)last_hidden_state = onnx_outputs[0]sentence_embeddings = self.mean_pooling_numpy(last_hidden_state, onnx_inputs['attention_mask'])sentence_embeddings = sentence_embeddings / np.linalg.norm(sentence_embeddings, axis=1, keepdims=True)return sentence_embeddings
4.2 推理流程
- 加载ONNX模型:通过InferenceSession加载ONNX模型。
- 加载词汇表:读取BERT的词汇表,用于将输入文本转化为模型可接受的input_ids格式。
- 文本预处理:将输入的文本进行分词、截断或填充为固定长度,并生成相应的注意力掩码attention_mask。
- 模型推理:通过ONNX Runtime调用模型,获取句子的最后隐藏状态输出。
- 均值池化:对最后的隐藏状态进行均值池化,计算出句子的嵌入向量。
- 归一化嵌入:将句子嵌入向量进行归一化,使得向量长度为1。
5. 总结
通过将BERT模型导出为ONNX并使用ONNX Runtime进行推理,我们可以大幅度提升推理速度,同时保持了高精度的句子嵌入计算。在实际应用中,ONNX Runtime的跨平台特性和高性能表现使其成为模型部署和推理的理想选择。
使用上述步骤,您可以轻松将BERT句子模型应用到各种自然语言处理任务中,如语义相似度计算、文本分类和句子嵌入等。
相关文章:
导出BERT句子模型为ONNX并推理
在深度学习中,将模型导出为ONNX(Open Neural Network Exchange)格式并利用ONNX进行推理是提高推理速度和模型兼容性的一种常见做法。本文将介绍如何将BERT句子模型导出为ONNX格式,并使用ONNX Runtime进行推理,具体以中…...
Unity Apple Vision Pro 自定义手势识别交互
Vision Pro 是可以使用Unity 提供的XR Hand SDK,可通过XR Hand制作自定义手势识别,通过识别出不同的手势做自定义交互 效果预览 在VisionPro中看VisionPro|手势交互|自定义手势识别 Unity Vision Pro 中文课堂教程地址: Unity3D Vision Pro 开发教程【…...
 
【Javaee】网络原理—TCP协议的核心机制
前言 TCP/IP五层协议是互联网中的主流模型,为网络通信提供了一个稳固的框架。 主要包含了应用层,传输层,网络层,数据链路层,物理层。 本篇主要介绍传输层的TCP协议的核心机制 一. 确认应答(ack…...
 
Unity插件-Intense TPS 讲解
目录 关于TPS 打开场景:WeaponTest.unity, 只要把这些枪点,打开(默认隐藏,不知道为何), 一开始不能运行如何修复 总结 关于TPS 个人不是TPS,FPS的射击游戏爱好者, 不过感觉这个枪感&…...
 
【p2p、分布式,区块链笔记 Blockchain】truffle001 以太坊开发框架truffle初步实践
以下是通过truffle框架将智能合约部署到Ganache的步骤 Truffle简介环境准备:智能合约 编写 & 编译部署合约本地服务器ganache配置网络配置部署合约: 运行Truffle迁移(部署):与智能合约交互: 以下是通过truffle框架将智能合约部署到Ganach…...
 
网站被浏览器提示“不安全”,如何快速解决
当网站被浏览器提示“不安全”时,这通常意味着网站存在某些安全隐患,需要立即采取措施进行解决。 一、具体原因如下: 1.如果网站使用的是HTTP协议,应立即升级HTTPS。HTTPS通过使用SSL证书加密来保护数据传输,提高了网…...
java -jar启动 报错: Error: Unable to access jarfile
是JDK版本不对,即运行项目所需JDK与本机所装JDK版本不同 解决方法: 修改JDK版本即可。 jarfile 其后的路径不对 解决方法 修改正确的路径 将绝对路径修改为相对路径或者将相对路径修改为绝对路径,尝试一下...
 
Servlet(三)-------Cookie和session
一.Cookie和Session Cookie和Session都是用于在Web应用中跟踪用户状态的技术。Cookie是存储在用户浏览器中的小文本文件,由服务器发送给浏览器。当用户再次访问同一网站时,浏览器会把Cookie信息发送回服务器。例如,网站可以利用Cookie记住用…...
 
最新物流行业CRM系统应用数字化解决方案
因势利导 ——全球化物流的挑战与机遇 在全球经济一体化与互联网技术快速发展的双重驱动下,物流行业正经历着前所未有的变革时期。这一变革不仅影响 着行业的发展模式,还对运营效率和客户体验提出了新的要求。 随着市场需求的不断演变,物流行业已呈现出多元化和专业 化并行的发…...
[deadlock]死锁导致的设备登录无响应问题
[deadlock]死锁导致的设备登录无响应问题 一、问题现象二、初步观察三、继续深挖查看netlink相关信息查看warnd进程栈 四、再接再厉查看warnd 用户栈 后记 一、问题现象 实验室一台压力测试设备突然无法登录,无论web页面,ssh或者telnet登录,…...
 
2024年10月21日计算机网络,乌蒙第一部分
【互联网数据传输原理 |OSI七层网络参考模型】 https://www.bilibili.com/video/BV1EU4y1v7ju/?share_sourcecopy_web&vd_source476fcb3b552dae37b7e82015a682a972 mac地址相当于是名字,ip地址相当于是住址,端口相当于是发送的东西拿什…...
ESlint代码规范
这里写目录标题 ESlint代码规范解决代码规范错误 ESlint代码规范 代码规范:一套写代码的约定规则。例如:“赋值符号左右是否需要空格” “一行代码结束是否要加分号” JavaScript Standard Style规范说明:https://standardjs.com/rules-zhc…...
 
【Vue.js设计与实现】第三篇第11章:渲染器-快速 Diff 算法-阅读笔记
文章目录 11.1 相同的前置元素和后置元素11.2 判断是否需要进行 DOM 移动操作11.3 如何移动元素11.4 总结 系列目录:【Vue.js设计与实现】阅读笔记目录 非常快的Diff算法。 11.1 相同的前置元素和后置元素 不同于简单 Diff 算法和双端 Diff 算法,…...
 
材质变体 PSO学习笔记
学习笔记 参考各路知乎大佬文章 首先是对变体的基本认知 概括就是变体是指根据引擎中上层编写(UnityShaderLab/UE连连看)中的各种defines情况,根据不同平台编译成的底层shader,OpenGL-glsl/DX(9-11)-dxbc DX12-dxil/Vulkan-spirv,是打到游…...
 
2024年【烟花爆竹储存】考试及烟花爆竹储存复审模拟考试
题库来源:安全生产模拟考试一点通公众号小程序 烟花爆竹储存考试参考答案及烟花爆竹储存考试试题解析是安全生产模拟考试一点通题库老师及烟花爆竹储存操作证已考过的学员汇总,相对有效帮助烟花爆竹储存复审模拟考试学员顺利通过考试。 1、【单选题】( …...
文件夹操作
文件夹操作 opendir closedir readdir write(fd,buf,strlen(buf)); return 0; } 作用 : 打开目录 opendir 所有头文件 : #include <sys/types.h> #include <dirent.h> 函数 : DIR *opendir(const char *name); 参数: name :目…...
 
如何制作一台自己想要的无人机?无人机改装调试技术详解
制作一台符合个人需求的无人机并对其进行改装调试,是一个既具挑战性又充满乐趣的过程。以下是从设计、选购材料、组装、调试到改装的详细步骤: 一、明确需求与设计 1. 明确用途与性能要求: 确定无人机的使用目的,如航拍、比赛、…...
 
Linux -- 进程间通信、初识匿名管道
目录 进程间通信 什么是进程间通信 进程间通信的一般规律 前言: 管道 代码预准备: 如何创建管道 -- pipe 函数 参数: 返回值: wait 函数 参数: 验证管道的运行: 源文件 test.c : m…...
 
网站的SSL证书快到期了怎么办?怎么续签?
网站的SSL证书即将到期时,需要续签一个新的证书以保持网站的安全性和信任度。以下是续签SSL证书的一般步骤: 1. 选择证书提供商 如果您之前使用的是免费证书,您可以选择继续使用同一提供商的免费证书服务进行续签。如果您需要更高级别的证书…...
解決爬蟲代理連接的方法
爬蟲在運行過程中常常會遇到代理連接的問題,這可能導致數據抓取的效率降低甚至失敗。 常見的代理連接問題 代理IP失效:這是最常見的問題之一。有些代理IP可能在使用一段時間後失效,導致連接失敗。 連接超時:由於網路不穩定或代…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
 
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
 
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
 
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
 
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
 
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
 
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
