【自然语言处理】BERT模型
BERT:Bidirectional Encoder Representations from Transformers
BERT 是 Google 于 2018 年提出的 自然语言处理(NLP)模型,它基于 Transformer 架构的 Encoder 部分。BERT 的出现极大提升了 NLP 任务的性能,如问答系统、情感分析、机器翻译等。BERT 的特点是利用 双向 Transformer,能够捕捉句子上下文的完整语义信息。下面是 BERT 的详细介绍。
一、BERT 的核心特点
-
双向编码(Bidirectional Encoding)
- 相较于传统的语言模型(如 GPT)只从左到右(或右到左)读取文本,BERT 从两个方向同时读取文本。
- 这种双向性让 BERT 能更好地理解词汇在上下文中的含义。例如:
- 在句子 “我去银行存钱” 和 “我在河边的银行钓鱼” 中,“银行” 的含义是不同的,BERT 能从上下文中捕捉这些区别。
-
基于 Transformer 架构
- BERT 使用 Transformer Encoder,而 Transformer 本质上是基于注意力机制(Attention)的网络,可以有效捕捉输入序列中各词之间的依赖关系。
- BERT 中的 多头注意力机制 使其能够处理不同层面的语义关系。
BERT结构如下图蓝色框所示:
BERT 选择仅使用 Transformer Encoder 结构 是因为它的设计目标是解决自然语言理解任务。Encoder 能捕捉双向上下文,并生成高效的特征表示,而这些特性正是理解任务所需要的。
- 预训练和微调(Pre-training & Fine-tuning)
- 预训练:BERT 在大规模无标注数据(如 Wikipedia、BooksCorpus)上进行预训练,学到语言的基本知识。
- 微调:在下游任务(如情感分析、文本分类)上进行微调,只需添加少量标注数据即可获得出色的结果。
二、BERT 的两种预训练任务
-
Masked Language Model (MLM):
- BERT 会随机将输入句子中的部分词遮盖(mask)住,然后让模型预测被遮盖的词。例如:
- 输入句子:“我今天很 [MASK]。”
- 模型需要预测 [MASK] 为“高兴”。
- 这种遮盖词的方式使模型能同时学习句子中每个词的上下文。
- BERT 会随机将输入句子中的部分词遮盖(mask)住,然后让模型预测被遮盖的词。例如:
-
Next Sentence Prediction (NSP):
- 这个任务训练模型判断两段句子是否存在逻辑上的连接关系。例如:
- 句子 A:“我买了本书。”
- 句子 B:“我打算今晚开始看。”
- 模型需要判断句子 B 是否是句子 A 的下一句。
- 这个任务训练模型判断两段句子是否存在逻辑上的连接关系。例如:
三、BERT 的应用场景
- 文本分类(情感分析、垃圾邮件检测等)
- 问答系统(如 Google 搜索中的自然语言问答)
- 文本相似度计算(如搜索引擎的相关性排序)
- 命名实体识别(NER)(识别文本中的人物、地点、机构等)
- 机器翻译(与其他模型组合使用)
四、BERT 的模型版本
-
BERT-Base:
- 层数(Layers):12 层 Transformer Encoder
- 隐层大小(Hidden size):768
- 注意力头数(Attention Heads):12
- 参数数量:约 1.1 亿
-
BERT-Large:
- 层数:24 层 Transformer Encoder
- 隐层大小:1024
- 注意力头数:16
- 参数数量:约 3.4 亿
五、BERT 的衍生模型
- RoBERTa:对 BERT 的改进版,通过更大的数据集和更长的训练时间提高性能。
- ALBERT:通过参数共享和矩阵分解来减少参数量,加速训练。
- DistilBERT:BERT 的轻量级版本,适用于移动设备和实时应用场景。
- BERTweet:专门针对 Twitter 数据优化的 BERT 版本。
- BioBERT:针对生物医学领域的 BERT 模型。
六、BERT 的缺点与挑战
- 计算资源需求高:BERT 预训练需要大量计算资源和 GPU 支持。
- 处理长文本的局限性:BERT 的输入长度最多支持 512 个词,对于超长文本的处理效果有限。
- 部署复杂性:由于参数量大,BERT 模型的部署和推理速度可能较慢,需要进一步优化(如使用 DistilBERT 或 TensorRT)。
七、BERT 的加速与优化
-
CUDA 和 cuDNN 加速:
- 使用 CUDA 和 cuDNN 可以大幅加速 BERT 在 GPU 上的训练和推理。
- 深度学习框架(如 TensorFlow 和 PyTorch)都支持 GPU 加速,自动调用 CUDA/cuDNN。
-
TensorRT:
- NVIDIA 提供的 TensorRT 可以进一步优化 BERT 模型,使其在推理阶段的速度更快,适合部署在实时系统中。
-
分布式训练:
- 使用多 GPU 或 TPU 进行分布式训练,可以显著缩短 BERT 的训练时间。
总结
BERT 是一种强大的自然语言处理模型,广泛应用于文本理解、问答、分类等任务。它通过 双向 Transformer 架构捕捉上下文信息,并通过预训练和微调提高模型的泛化能力。BERT 的计算需求较高,因此常常结合 CUDA 和 cuDNN 进行 GPU 加速,并使用优化版本(如 RoBERTa 和 DistilBERT)来平衡性能和资源消耗。
相关文章:
【自然语言处理】BERT模型
BERT:Bidirectional Encoder Representations from Transformers BERT 是 Google 于 2018 年提出的 自然语言处理(NLP)模型,它基于 Transformer 架构的 Encoder 部分。BERT 的出现极大提升了 NLP 任务的性能,如问答系…...
Android 添加如下飞行模式(飞行模式开和关、飞行模式开关菜单显示隐藏)接口
请添加如下飞行模式(飞行模式开关、飞行模式开关显示隐藏)接口: 飞行模式飞行模式开关com.action.airplankey: enable value:boolean true open the airplan false close the airplan关闭Intent intent = new Intent(); intent.setAction("com.action.airplan");…...
【Vue3】基于 Vue3 + ECharts 实现北京市区域地图可视化
文章目录 基于 Vue3 ECharts 实现北京市区域地图可视化1、引言2、项目初始化2.1、环境搭建2.2 、安装依赖2.3、项目结构 3、地图数据准备3.1、地图 JSON 文件获取(具体的json数据) 4、 组件开发4.1、Map 组件的设计思路4.2、基础结构实现4.3、核心数据结…...
【IC】什么是min period check
在 Synopsys Primetime 工具中可以检查.lib 文件中时钟输入的最小周期。想象这样一个场景,有一个设计 A,它有一个名为 clk 的时钟,并且该设计的 clk 周期被设定为一个值,比如 2 纳秒,即 500MHz。假设我们在进行静态时序…...
MyBatis入门之一对多关联关系(示例)
【图书介绍】《SpringSpring MVCMyBatis从零开始学(视频教学版)(第3版)》-CSDN博客 《SpringSpring MVCMyBatis从零开始学(视频教学版)(第3版)》(杨章伟,刘祥淼)【摘要 书评 试读】- 京东图书 …...
【Git 】Windows 系统下 Git 文件名大小写不敏感
背景 在 Windows 系统上,Git 对文件名大小写的不敏感性问题确实存在。由于 Windows 文件系统(如 NTFS )在默认情况下不区分文件名大小写所导致的。 原因分析 文件系统差异 Windows文件系统(如 NTFS)默认不区分文件名…...
【算法系列-二叉树】层序遍历
【算法系列-二叉树】层序遍历 文章目录 【算法系列-二叉树】层序遍历1. 算法分析🛸2. 相似题型🎯2.1 二叉树的层序遍历II(LeetCode 107)2.2 二叉树的右视图(LeetCode 199)2.3 二叉树的层平均值(LeetCode 637)2.4 N叉树的层序遍历(LeetCode 429)2.5 在每个…...
我的世界方块改进版
引子 之前文章的磁性方块,通过3D打印实现,也批量打印了一些,下图就是一个小树 使用过程中,发现磁力感觉不紧,所以想改进一版。 正文 之前的结构如下:: 如果出现相邻的空隙间的磁铁相互作用&am…...
博客搭建之路:hexo增加搜索功能
文章目录 hexo增加搜索功能本地搜索弊端algolia搜索 hexo增加搜索功能 hexo版本5.0.2 npm版本6.14.7 next版本7.8.0 作为一个博客,没有搜索功能,如何在大批文章中找到自己想要的,那在hexo中如何增加搜索功能呢? search:path: sea…...
2024年最新互联网大厂精选 Java 面试真题集锦(JVM、多线程、MQ、MyBatis、MySQL、Redis、微服务、分布式、ES、设计模式)
前言 春招,秋招,社招,我们 Java 程序员的面试之路,是挺难的,过了 HR,还得被技术面,在去各个厂面试的时候,经常是通宵睡不着觉,头发都脱了一大把,还好最终侥幸…...
MybatisPlus入门(一)MybatisPlus简介
一、MyBatis简介 MyBatisPlus(简称MP)是基于MyBatis框架基础上开发的增强型工具,旨在简化开发、提高效率 - 官网:https://mybatis.plus/ https://mp.baomidou.com/ MyBatisPlus特性: - 无侵入:只做增强…...
QoS学习笔记
QoS业务分类 基于 DiffServ 服务模型的 QoS 业务可以分为以下几大类: 流分类和标记(Traffic classification and marking):要实现差分服务,需要首先将数据包分为不同的类别或者设置为不同的优先级。将数据包分为不同…...
图(邻接矩阵)知识大杂烩!!(邻接矩阵结构,深搜,广搜,prim算法,kruskal算法,Dijkstra算法,拓扑排序)(学会一文让你彻底搞懂!!)
小伙伴们大家好,今天给大家带来图(邻接矩阵)的各种知识,让你看完此文章彻底学会邻接矩阵的相关问题。 1.邻接矩阵表示方法 1.1知识讲解 我们用一个二维数组arr来表示图。若图为有向图,其中arr【i】【j】w表示i号点和…...
Prometheus自定义PostgreSQL监控指标
本文我们将介绍如何在Prometheus中创建自定义PostgreSQL指标。默认情况下由postgres_export运行的查询可能不能满足用户需求,但我们可以创建自定义查询,并要求postgres_exporter公开自定义查询的结果。postgres_exporter最近被移到了Prometheus Communit…...
400行程序写一个实时操作系统(十六):操作系统中的调度策略
前言 在前面我们完成了Sparrow的临界区的代码,使用临界区,能够解决常见的并发问题,现在该完善我们的调度算法了。 调度算法在操作系统领域常常是热门的话题。不同的用途将会使用不同的调度策略。在本节,笔者将为大家介绍一些操作…...
从安灯系统看汽车零部件工厂的智能制造转型
在当今快速发展的制造业领域,汽车零部件工厂正面临着日益激烈的市场竞争和不断提高的客户需求。为了在竞争中脱颖而出,实现可持续发展,许多汽车零部件工厂纷纷踏上智能制造转型之路。而安灯系统作为一种重要的生产管理工具,在这场…...
SwiftUI(三)- 渐变、实心形状和视图背景
引言 在现代的应用的UI设计中,渐变和形状背景为界面带来了丰富的层次与视觉效果,而SwiftUI提供了一系列简单且强大的API,可以轻松实现这些效果。在这篇文章中,我们将介绍SwiftUI中的渐变、实心形状和视图背景的基础用法ÿ…...
RK3568-ota升级
ota升级 OTA(Over-the-Air)即空间下载技术。 OTA 升级是 Android 系统提供的标准软件升级方式。它功能强大,可以无损失升级系统,主要通过网络,例如 WIFI、3G/4G 自动下载 OTA 升级包、自动升级,也支持通过…...
GR-ConvNet代码详解
GR-ConvNet代码详解 文章目录 GR-ConvNet代码详解前言一、utils1.dataset_processing1.image.py1.Iamge类2.DepthImage类3.WidthImage类 2.grasp.py1. _gr_text_to_no()方法2.GraspRectangles类3.GraspRectangle类3.Grasp类4.detect_grasps方法 3.generate_cornell_depth.py4.e…...
Excel自带傅里叶分析数据处理——归一化处理
在Excel工具中,默认情况下数据处理---傅里叶分析通常不进行归一化处理,需要用户手动进行归一化处理。 (1)傅里叶变换的原理 傅里叶变换将时域信号转换为频域信号,输出的是复数形式的频率分量,包含了幅值和…...
Centos7.6版本安装mysql详细步骤
操作步骤: 1.下载Linux版本Mysql并上传至linux系统中 2.解压mysql并查询系统中是否有相关软件存在以及配置mysql,启动mysql tar -zxvf mysql-5.7.35-linux-glibc2.12-x86_64.tar.gz tar -zxvf mysql-5.7.35-linux-glibc2.12-x86_64.tar.gz rpm -qa|grep mysql ##查…...
寄宿学校:为自闭症儿童提供全面的教育和关爱
在这个多彩的世界里,每一个生命都值得被温柔以待,每一颗心灵都值得被悉心呵护。然而,自闭症儿童这一特殊群体,他们的世界却常常被误解和忽视。幸运的是,有一种教育模式——寄宿学校,正为这些孩子打开了一扇…...
LLaMA Factory环境配置
LLaMA-Factory官方文档 安装正确的torch和cuda版本 参考: PyTorch 报错解决 1.ImportError: /usr/lib/x86_64-linux-gnu/libstdc.so.6: version GLIBCXX_3.4.29 not found 参考这个解决:丝滑解决ImportError: /usr/lib/x86_64-linux-gnu/libstdc.s…...
STM32实现毫秒级时间同步
提起“时间同步”这个概念,大家可能很陌生。一时间搞不清楚是什么意思。 我理解“时间同步”可以解决多个传感器采集数据不同时的问题,让多个传感器同时采集数据。 打个比方。两个人走路,都是100毫秒走一步(频率相同是前提&…...
瑞吉外卖之com.fasterxml.jackson.dataformat.cbor.CBORFactor相关报错
1.报错:Error creating bean with name routerFunctionMapping defined in class path resource [com/itheima/reggie/config/WebMvcConfig.class]: Failed to instantiate [org.springframework.web.servlet.function.support.RouterFunctionMapping]: Factory met…...
CSS - grid制作表格
1. grid-template-columns:网格布局中的列的数量,也可以设置列的宽度 .grid-container {display: grid;grid-template-columns: 80px 200px auto 40px; }.grid-container {display: grid;grid-template-columns: auto auto auto auto;//表示所有列的宽度…...
【pip】 的换源(临时换源和永久换源)
【pip】 的换源(临时换源和永久换源) 一、临时换源二、永久换源三、Linux换源四、Windows换源 一、临时换源 临时换源只需要在pip安装包时,加上一个-i参数后接源的url即可: 临时换源: 清华源 pip3 install markdown…...
Kaggle 数据集dogs-vs-cats的错误
如果你想用kaggle数据集dogs-vs-cats做深度学习数据,可能会遇到数据bug,大概类似于下面的错误: UnidentifiedImageError: cannot identify image file 其原因不是你的程序有问题,而是数据集本身还有bug: cats/666.jpgdogs/11702.jpg 预览一下…...
【网络原理】网络地址转换----NAT技术详解
💐个人主页:初晴~ 📚相关专栏:计算机网络那些事 我们在 IP协议 一文中介绍过,由于IPv4协议中 IP地址只有32位,导致最多只能表示 42亿9千万个IP地址。但我们需要通过IP地址来标识网络上的每一个设备&#x…...
React怎么创建虚拟dom和挂载到页面
1、🍟你可以直接下载本节配套的资源代码,然后导入vscode看效果,也可以跟着教程一点一点敲,都是没问题的。 2、🤔怎么运行本节代码? 很简单,随便找个浏览器打开index.html即可。💕 代…...
怎样用dw做网站主页/目前病毒的最新情况
seq2seq模型目前还有很多缺点,本文所做实验表明: (1)生成的文本过短,3%的摘要不超过3个词 (2)随着生成序列的增加,生成性能急剧恶化 (3)重复生成某个词 &…...
西安网站建设首选/优化系统的软件
原标题:「数控干货」基于UG CLS文件使用 C 语言制作智能后处理工具1 前言UG 后处理操作是 UGCAM 数控加工工作中一个重要环节,主要任务是把在 UG 加工环境下生成的加工刀位文件转换成机床可接受的数控代码文件。UG 本身提供了强大的 Post Builder 后处理…...
石家庄商城网站建设/湖北疫情最新消息
金木水火土命查询表五行相生的顺序是:水生木,木生火,火生土,土生金,金生水; 五行相克的顺序是:金克木,木克土,土克水,水克火,火克金.金木水火土命查询表(2009-03-30)土命 金命 水命 查询表 金木 甲子年生海中金命(1924,1984) 乙丑年生海中金…...
建筑案例网站有哪些/上海企业网站推广
不知道什么原因,Zenoss官方的文档中似乎没有涉及到国际化方面的内容,本文对如何对Zenoss如何汉化做个简单的总结 基本汉化 http://code.google.com/p/zenforge/wiki/ZenossI18n 这里包含了基本的汉化包,该汉化包完成了60%左右的汉化工作,这…...
滑县网站建设服务/电子商务与网络营销教案
面向对象 : 就是一种编程思想,是把构成问题事务分解成各个对象,建立对象的目的不是为了完成一个步骤,而是为了描叙某个事物在整个解决问题的步骤中的行为。 如我要造辆车: Step1. 设计画图>保时捷设计所 Step2. 原…...
台湾做网站/百度指数在线查询
转载于:https://www.cnblogs.com/zhaoqingqing/p/3407390.html...