Leetcode 二叉树的右视图

好的,我来用中文详细解释这段代码的算法思想。
问题描述
题目要求给定一个二叉树的根节点,从树的右侧看过去,按从上到下的顺序返回看到的节点值。即,我们需要找到每一层的最右侧节点并将其加入结果中。
算法思想
这道题可以通过广度优先搜索(BFS)来解决。BFS的特点是逐层遍历树的节点,非常适合在每一层获取最右侧的节点。以下是具体的算法步骤:
-
使用队列进行层序遍历:
- 我们采用BFS来逐层遍历树,BFS通常会使用队列(
Queue)来实现。 - 首先,将树的根节点放入队列中。
- 我们采用BFS来逐层遍历树,BFS通常会使用队列(
-
每层节点的遍历:
- 在每一层开始时,我们记录队列的大小,即当前层的节点数。
- 然后,我们依次从队列中取出该层的每一个节点,处理这些节点,并将它们的左右子节点加入队列,以便下一层继续遍历。
- 在遍历当前层的节点时,我们将当前层的最后一个节点(即最右侧的节点)保存下来。
-
记录每层最右侧的节点:
- 对于每一层的节点,最后一个处理的节点就是该层的最右侧节点。
- 因此,在遍历每层的过程中,我们将每层最后一个节点的值添加到结果列表中。
-
返回结果:
- 当遍历完所有层后,结果列表中就存储了从上到下每一层的最右侧节点值。
java solution
- 当遍历完所有层后,结果列表中就存储了从上到下每一层的最右侧节点值。
class Solution {public List<Integer> rightSideView(TreeNode root) {List<Integer> result = new ArrayList<>();if(root == null) return result;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while(!queue.isEmpty()) {int size = queue.size(); //获取当前层的节点数TreeNode rightmostNode = null; //保存当前层的最右侧节点for(int i = 0; i < size; ++i) {TreeNode currentNode = queue.poll(); //取出当前节点rightmostNode = currentNode;if(currentNode.left != null) queue.offer(currentNode.left);if(currentNode.right != null) queue.offer(currentNode.right);}if(rightmostNode != null) result.add(rightmostNode.val);}return result;}
}
关键步骤解释
-
初始化结果列表:
List<Integer> result = new ArrayList<>();- 用于存储每层的最右侧节点值。
-
判断根节点是否为空:
if (root == null) return result;- 如果根节点为空,则直接返回空列表,因为没有节点可以被观察到。
-
使用队列来实现BFS:
Queue<TreeNode> queue = new LinkedList<>();初始化一个队列。queue.offer(root);将根节点加入队列,准备开始逐层遍历。
-
逐层遍历:
while (!queue.isEmpty())表示只要队列中还有节点,继续进行遍历。int size = queue.size();获取当前层的节点数量。TreeNode rightmostNode = null;初始化一个变量来保存当前层的最右侧节点。
-
遍历当前层的所有节点:
for (int i = 0; i < size; i++)遍历当前层的所有节点。TreeNode currentNode = queue.poll();从队列中取出当前节点。rightmostNode = currentNode;每次循环都会更新最右侧节点的值,最后一次更新的节点就是该层的最右侧节点。if (currentNode.left != null) queue.offer(currentNode.left);将左子节点加入队列(如果存在)。if (currentNode.right != null) queue.offer(currentNode.right);将右子节点加入队列(如果存在)。
-
记录每层的最右侧节点:
if (rightmostNode != null) result.add(rightmostNode.val);将当前层的最右侧节点值添加到结果列表中。
-
返回结果:
return result;当遍历完所有层后,返回结果列表。
时间复杂度
此算法的时间复杂度为 (O(n)),其中 (n) 是树中节点的数量。因为每个节点只会被访问一次。
总结
这段代码通过层序遍历来获取每层的最右侧节点,从而实现了从右侧观察二叉树的效果。最终结果列表中按顺序保存了从上到下每一层的最右侧节点值,符合题目要求。
相关文章:
Leetcode 二叉树的右视图
好的,我来用中文详细解释这段代码的算法思想。 问题描述 题目要求给定一个二叉树的根节点,从树的右侧看过去,按从上到下的顺序返回看到的节点值。即,我们需要找到每一层的最右侧节点并将其加入结果中。 算法思想 这道题可以通…...
console.log(“res.data = “ + JSON.stringify(res.data));
res.data[object Object] 说明你在控制台打印 res.data 时,它是一个 JavaScript 对象,而不是字符串。这种情况下,console.log 输出的 [object Object] 表示它无法直接显示对象的内容。 要查看 res.data 的实际内容,你需要将其转换…...
node和npm
背景(js) 1、为什么js能操作DOM和BOM? 原因:每个浏览器都内置了DOM、BOM这样的API函数 2、浏览器中的js运行环境? v8引擎:负责解析和执行js代码 内置API:由运行环境提供的特殊接口,只能在所…...
通过四元数求机器人本体坐标旋转量
是的,通过两次姿态数据(以四元数表示)的差值,可以确定机器人在两个时刻之间的旋转角度变化。具体步骤如下: 获取四元数:假设两个时刻的四元数分别为 ( q_1 ) 和 ( q_2 )。计算四元数的差值: 将…...
CodeQL学习笔记(2)-QL语法(递归)
最近在学习CodeQL,对于CodeQL就不介绍了,目前网上一搜一大把。本系列是学习CodeQL的个人学习笔记,根据个人知识库笔记修改整理而来的,分享出来共同学习。个人觉得QL的语法比较反人类,至少与目前主流的这些OOP语言相比&…...
Video-XL:面向小时级视频理解的超长视觉语言模型
在人工智能领域,视频理解一直是一个挑战性的任务,尤其是对于长时间视频内容的理解。现在,Video-XL的问世标志着我们在这一领域迈出了重要的一步。Video-XL是一个专为小时级视频理解设计的超长视觉语言模型,它能够处理超长视频序列…...
postgresql subtransaction以及他的效能
文章目录 什么是subtransaction使用子事务PL/pgSQL 中的子事务与其他数据库的兼容性运行性能测试Subtransaction的实现子事务和可见性解释测试结果诊断子事务过多的问题结论 什么是subtransaction 在 PostgreSQL 中,当处于自动提交模式时,必须使用 BEGI…...
新手逆向实战三部曲之二——通过更改关键跳注册软件(爆破)
教程开始: 软件已无壳,具体脱壳请移步"新手逆向实战三部曲之一",这里略去查壳脱壳。 先用OD打开软件试运行了解下注册流程,以便找到突破口 经过对软件的了解,本次教程采用的是下bp MessageBoxA断点的方法找…...
高级SQL技巧:提升数据查询与分析能力的关键
高级SQL技巧:提升数据查询与分析能力的关键 在数据驱动的时代,SQL(结构化查询语言)是数据分析和数据库管理的基础工具。掌握高级SQL技巧不仅能提高查询效率,还能优化数据库结构,使数据分析和报告更加精准高…...
IntelliJ IDEA 安装 Maven 工具并更换阿里源
Maven是一个强大的项目管理工具,可以帮助Java开发者管理项目依赖、构建项目等。在IntelliJ IDEA中安装Maven工具并将其源更改为阿里源的步骤如下: 1. 安装 Maven 通过 IntelliJ IDEA 自带 Maven 打开 IntelliJ IDEA。创建或打开一个项目。点击菜单栏中…...
MIT 6.824 Lab1记录
MapReduce论文阅读 1. 编程模型 Map 函数(kv -> kv) Map 函数将输入的键值对处理为一系列中间值(键值对),并将所有的中间结果传递给 Reduce 处理。 map(String key, String value):// key: document name// val…...
C语言数据结构学习:[汇总]
介绍 这些是我在学习C语言数据结构时练习的一些题目以及个人笔记 大家也可以参考着来学习 正在更新 大家可以在我的gitee仓库 中下载笔记源文件 笔记源文件可以在Notion中导入 内容导航 C语言数据结构学习:单链表-CSDN博客...
unity游戏开发之塔防游戏
如何制作塔防游戏 让我们以迷你游戏的形式创建一个休闲塔防。 从基本处理到适用技术,应有尽有,因此您只需制作一次即可获得 Unity 中的游戏制作专业知识。 与背景素材结合使用时,您将获得以下游戏视图: 由于在创建过程中使用了 …...
前端项目接入sqlite轻量级数据库sql.js指南
前端项目接入sqlite轻量级数据库sql.js指南 引言 sql.js 是一个强大的JavaScript库,它使得SQLite数据库能够在网页浏览器中运行。这个开源项目提供了一种方式,让开发者可以在前端环境中实现轻量级的数据库操作,无需依赖服务器端数据存储&…...
模拟退火算法(Simulated Annealing)详细解读
模拟退火算法(Simulated Annealing) 是一种随机优化算法,受到物理学中金属退火过程的启发。它用于寻找全局最优解,特别适合解决组合优化问题。模拟退火算法通过模拟物质在加热和冷却过程中粒子位置的变化,逐渐寻找系统…...
(二十一)、Docker 部署 Minikube 使用可视化管理工具 Kuboard
文章目录 1、介绍docker 运行 minikube 集群节点(kube-apiserver )无法被直接访问的问题Kuboard 需要访问到 k8s 集群的kube-apiserver 2、安装 Kuboard2.1、k8s 集群节点可以被外部直接访问的情况2.1.1、下载镜像2.1.2、运行 deployment.yml2.1.3、访问…...
代码编辑组件
代码编辑组件 文章说明核心代码运行演示源码下载 文章说明 拖了很久,总算是自己写了一个简单的代码编辑组件,虽然还有不少的bug,真的很难写,在写的过程中感觉自己的前端技术根本不够用,好像总是方案不够好;…...
裴蜀定理与欧几里得算法——蓝桥杯真题中的应用
目录 裴蜀定理(Bzouts Theorem)1、定义2、推论3、欧几里得算法4、多个整数的裴蜀定理扩展 真题挑战解题思路代码实现与详细注释代码解析 裴蜀定理(Bzout’s Theorem) 1、定义 对于任意两个整数 a 和 b ,如果它们的最…...
冯诺依曼架构及CPU相关概念
一. 操作系统的概念 1. 概念 操作系统(Operating System). 首先, 所有的计算机都是由软件和硬件构成的. 而操作系统就是许许多多软件中的一种软件, 操作系统可以看作是由两部分组成: 操作系统内核系统级应用程序. 2. 作用 (1) 管理硬件设备, 调度和协调各个硬件之间的工作.…...
智能管线巡检系统:强化巡检质量,确保安全高效运维
线路巡检质量的监控是确保线路安全、稳定运行的重要环节。为了有效监控巡检质量,采用管线巡检系统是一种高效、科学的手段。以下是对如何通过管线巡检系统实现线路巡检质量监控的详细分析: 一、巡检速度监控 管线巡检系统能够实时监控巡检人员的巡检速度…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
