当前位置: 首页 > news >正文

【GPIO】2.ADC配置错误,还是能得到电压数据

配置ADC功能时,GPIO引脚弄错了,P1写成P2,但还是配置成功,能得到电压数据。

首先一步步排查:

  1. 既然引脚弄错了,那引脚改为正确的引脚,能得到数据
  2. 通过第一步判断,GPIO配置似乎是不起作用的,那么将GPIO初始化全部注释掉,直接进入ADC初始化,也是能得到输据。
    在这里插入图片描述
  3. 保证引脚正确,改ADC通道,能得到电压数据,但是数据不正确是其它的引脚的电压数据(改了ADC通道,对应的引脚自然也发生了变化)。

那么经过这么逐一验证后,此时有个猜想,这意味着在不进行任何GPIO配置的情况下,ADC可能仍然能够从这些引脚读取数据。但是查了官方例程,以及别人写的代码,都是需要进行GPIO配置

官方历程 ADC_DMA

static void ADC_Config(void)
{ADC_InitTypeDef     ADC_InitStructure;GPIO_InitTypeDef    GPIO_InitStructure;/* ADC1 DeInit */  ADC_DeInit(ADC1);/* GPIOC Periph clock enable */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);/* ADC1 Periph clock enable */RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);/* Configure ADC Channel11 and channel10 as analog input */
#ifdef USE_STM320518_EVALGPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 ;
#elseGPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 ;
#endif /* USE_STM320518_EVAL */GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;GPIO_Init(GPIOC, &GPIO_InitStructure);/* Initialize ADC structure */ADC_StructInit(&ADC_InitStructure);/* Configure the ADC1 in continuous mode withe a resolution equal to 12 bits  */ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_ScanDirection = ADC_ScanDirection_Backward;ADC_Init(ADC1, &ADC_InitStructure); /* Convert the ADC1 Channel11 and channel10 with 55.5 Cycles as sampling time */ 
#ifdef USE_STM320518_EVALADC_ChannelConfig(ADC1, ADC_Channel_11 , ADC_SampleTime_55_5Cycles); 
#elseADC_ChannelConfig(ADC1, ADC_Channel_10 , ADC_SampleTime_55_5Cycles); 
#endif /* USE_STM320518_EVAL */  /* Convert the ADC1 temperature sensor  with 55.5 Cycles as sampling time */ ADC_ChannelConfig(ADC1, ADC_Channel_TempSensor , ADC_SampleTime_55_5Cycles);  ADC_TempSensorCmd(ENABLE);/* Convert the ADC1 Vref  with 55.5 Cycles as sampling time */ ADC_ChannelConfig(ADC1, ADC_Channel_Vrefint , ADC_SampleTime_55_5Cycles); ADC_VrefintCmd(ENABLE);/* Convert the ADC1 Vbat with 55.5 Cycles as sampling time */ ADC_ChannelConfig(ADC1, ADC_Channel_Vbat , ADC_SampleTime_55_5Cycles);  ADC_VbatCmd(ENABLE);/* ADC Calibration */ADC_GetCalibrationFactor(ADC1);/* ADC DMA request in circular mode */ADC_DMARequestModeConfig(ADC1, ADC_DMAMode_Circular);/* Enable ADC_DMA */ADC_DMACmd(ADC1, ENABLE);  /* Enable the ADC peripheral */ADC_Cmd(ADC1, ENABLE);     /* Wait the ADRDY flag */while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_ADRDY)); /* ADC1 regular Software Start Conv */ ADC_StartOfConversion(ADC1);
}

尽管我没有初始化GPIO,却发现ADC仍然能够使用。这让我想起,GPIO有某种默认的初始状态。然后查找手册发现手册中写了<在复位期间及复位刚刚完成后,复用功能尚未激活,I/O 端口被配置为输入浮空模式>。
在这里插入图片描述
原来如此,了解到I/O端口在复位后被配置为输入浮空模式,这让我想到在配置ADC时,或许可以不将GPIO专门设置为模拟输入模式,而是保持其默认状态。然而,我们在学习过程中常被告诫,在设置输入模式时,应避免使用浮空模式,因为它可能会导致不稳定的电平状态。那么,让我们回顾一下GPIO的不同输入模式,以便更好地理解为什么浮空模式通常不被推荐:
浮空输入与上下拉输入的框图与特征
在这里插入图片描述

此时,输出缓冲被禁用;图中的施密特触发器被启用;IO脚的数据被采样到数据输入寄存器可被读取。上/下拉电阻根据需要可以被打开或禁用。当上下拉电阻同时被禁用时即为浮空输入模式。

对于STM32芯片,复位后GPIO默认为浮空输入状态。对于不使用的GPIO,不建议让GPIO处于浮空输入模式。当它没有外接信号时,那个施密特触发器往往在随机地做电平翻转跳变,从而带来噪声并增加芯片的功耗。同时浮空脚对外部噪声或干扰敏感,对过ESD也极为不利

GPIO的Analog模式(GPIO_AN)的功能框图如下
在这里插入图片描述

这个Analog模式的GPIO状态跟上面的带可配置上下拉输入的GPIO状态主要有两个明显差别:

  1. 那个施密特触发器被关闭了,该触发器输出恒为0.
  2. 内部的上下拉电阻被关闭了。

这个施密特触发器被关闭了,GPIO的数字输入功能被取消。如果此时读取输入数据寄存器的值,结果恒为0.由于关闭了施密特触发器,上面提到的因它而起的电平跳变噪声和相应的额外功耗就没有了。

换句话说,当GPIO状态由浮空或上下拉输入状态改为Analog状态时,既消除了因为施密特触发器带来的噪声,同时又因它的关闭而降低了芯片动态功耗。

另外,配置在GPIO_Analog状态的GPIO属于高阻态,这点也有利于保持模拟信号的真实性。

GPIO可能被配置为某些模拟外设的复用脚,比如ADC,DAC的复用功能脚等,但也完全可能不做任何模拟外设的复用脚,只是配置在Analog模式而已。比方对于那些不用的管脚,我们都可以将其配置为GPIO_Analog状态。做过STM32芯片低功耗应用的人可能会在ST官方例程里发现过,在进低功耗模式之前对不用外设的对应GPIO都配置为Analog状态了
  
简单来说:
在GPIO输入模式下,不同的输入方式会影响GPIO引脚的电信号特性,具体的区别如下:

  1. 模拟输入:模拟输入是指将模拟信号连接到GPI0引脚上,这种输入方式需要使用ADC(模数转换器)将模拟信号转换为数字信号进行处理。
  2. 浮空输入:浮空输入是指GPIO引脚未连接到任何外部电路,此时引脚处于高阻态,电平状态不确定。这种方式下,GPIO引脚可能因为干扰信号的存在而产生误触发,因此应尽量避免使用。
  3. 下拉输入:下拉输入是指将GPIO引脚通过一个下拉电阳连接到地,当外部电路未连接时,GPIO引脚被下拉到低电平。这种方式下,当外部电路未连接时,引脚会保持低电平,避免误触发。
  4. 上拉输入:上拉输入是指将GPI0引脚通过一个上拉电阻连接到3.3V电源,当外部电路未连接时,GPIO引脚被上拉到高电平。这种方式下,当外部电路未连接时,引脚会保持高电平,避免误触发。

需要注意的是,下拉输入和上拉输入一般用于数字信号的输入,而模拟输入则用于模拟信号的输入。同时,在使用上拉输入和下拉输入时,需要选择合适的电阻值,以确保输入信号稳定。

总结:ADC配置时,还是要注意将引脚的GPIO配置成模拟输入,否则容易因为干扰信号的存在而产生误触发

相关文章:

【GPIO】2.ADC配置错误,还是能得到电压数据

配置ADC功能时&#xff0c;GPIO引脚弄错了&#xff0c;P1写成P2&#xff0c;但还是配置成功&#xff0c;能得到电压数据。 首先一步步排查&#xff1a; 既然引脚弄错了&#xff0c;那引脚改为正确的引脚&#xff0c;能得到数据通过第一步判断&#xff0c;GPIO配置似乎是不起作…...

css-元素居中方式

<section class"wrapper"><div class"content">Content goes here</div> </section>1. 使用 Flexbox Flexbox 是一种现代的布局方法&#xff0c;可以轻松实现居中。 .wrapper {display: flex; /* 使用 Flexbox …...

redis内存打满了怎么办?

1、设置maxmemory的大小 我们需要给 Redis设置maxmemory的大小&#xff0c;如果不设置的话&#xff0c;它会受限于系统的物理内存和系统对内存的管理机制。 2、设置内存的淘汰策略 内存的淘汰策略分为 8 种&#xff0c;从淘汰范围来说分为从所有的key中淘汰和从设置过期时间…...

决策算法的技术分析

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言(1)第一层级:分层状态机、分层决策树的想法(三个臭皮匠胜过一个诸葛亮)基于场景的固定规则化的分层决策核心思想(2)第二层级:数据管理的方…...

【Python爬虫】获取汽车之家车型配置附代码(2024.10)

参考大哥&#xff0c;感谢大哥&#xff1a;https://blog.csdn.net/weixin_43498642/article/details/136896338 【任务目标】 工作需要想更方便地下载汽车之家某车系配置清单&#xff1b;&#xff08;垃圾汽车之家不给下载导出表格&#xff0c;配置页叉掉了车系要出来还要重新…...

JVM 加载 class 文件的原理机制

JVM 加载 class 文件的原理机制 JVM&#xff08;Java虚拟机&#xff09;是一个可以执行Java字节码的虚拟机。它负责执行Java应用程序和应用程序的扩展&#xff0c;如Java库和框架。 文章目录 JVM 加载 class 文件的原理机制1. JVM1.1 类加载器1.2 魔数1.3 元空间 2. 类加载2.1 …...

NumPy学习第九课:字符串相关函数

前言 各位有没有注意到&#xff0c;NumPy从第八课开始其实基本上都是讲的是NumPy的函数&#xff0c;而且其实就是各种函数的调用&#xff0c;因为NumPy是一个很强大的函数库&#xff0c;这对我们以后再处理项目中遇到的问题时会有很大的帮助。我们将常用的函数进行一个列举&am…...

卷积神经网络(CNNs)在处理光谱特征的序列属性时表现不佳

卷积神经网络&#xff08;CNNs&#xff09;在处理光谱签名的序列属性时表现不佳&#xff0c;主要是由于其固有网络架构的局限性。具体原因如下&#xff1a; 局部感受野&#xff08;Local Receptive Field&#xff09;&#xff1a; CNN 的核心操作是卷积&#xff0c;它利用局部感…...

【IC】MCU的Tick和晶振频率

Tick 是指 MCU 内部时钟的一个周期&#xff0c;通常表示为一个固定的时间间隔。每个 tick 代表一个时间单位&#xff0c;通常以毫秒&#xff08;ms&#xff09;或微秒&#xff08;μs&#xff09;为单位。Tick 通常由 MCU 的定时器或计时器生成&#xff0c;作为系统时钟的一部分…...

从0到1学习node.js(npm)

文章目录 一、NPM的生产环境与开发环境二、全局安装三、npm安装指定版本的包四、删除包 五、用npm发布一个包六、修改和删除npm包1、修改2、删除 一、NPM的生产环境与开发环境 类型命令补充生产依赖npm i -S uniq-S 等效于 --save -S是默认选项npm i -save uniq包的信息保存在…...

【STM32 Blue Pill编程实例】-OLED显示DS18B20传感器数据

OLED显示DS18B20传感器数据 文章目录 OLED显示DS18B20传感器数据1、DS18B20介绍2、硬件准备及接线3、模块配置3.1 定时器配置3.2 DS18B20传感器配置3.3 OLED的I2C接口配置4、代码实现在本文中,我们将介绍如何将 DS18B20 温度传感器与 STM32 Blue Pill 开发板连接,并使用 HAL …...

STM32 从0开始系统学习3 启动流程

目录 写在前面 速通&#xff1a;做了什么&#xff1a; 分析I&#xff1a;分析2011年的startup文件所作 分析II&#xff1a;分析2017年的startup文件所作 Helps 2011 2017 Reference 写在前面 请各位看官看本篇笔记的时候首先了解一下计算机体系架构&#xff0c;了解基本…...

交换机:端口安全与访问控制指南

为了实现端口安全和访问控制&#xff0c;交换机通常通过以下几种机制和配置来保护网络&#xff0c;防止未经授权的访问和恶意攻击。 01-端口安全 定义及功能 端口安全功能允许管理员限制每个交换机端口可以学习的MAC地址数量。 通过绑定特定的MAC地址到交换机的某一端口上&a…...

【C++ | 数据结构】八大常用排序算法详解

1. 排序的稳定性 排序是我们生活中经常会面对的问题&#xff0c;小朋友站队的时候会按照从矮到高的顺序排列&#xff1b;老师查看上课出勤情况时&#xff0c;会按照学生的学号点名&#xff1b;高考录取时&#xff0c;会按照成绩总分降序依次录取等等。那么对于排序它是如何定义…...

Oracle 第7章:数据完整性约束

在Oracle数据库中&#xff0c;数据完整性是指确保存储在数据库中的数据的正确性和一致性。为了实现这一点&#xff0c;Oracle提供了多种机制来维护数据完整性&#xff0c;包括主键&#xff08;Primary Key&#xff09;、外键&#xff08;Foreign Key&#xff09;和唯一性约束&a…...

【核心】静态/动态全覆盖路径规划相关技术研究

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言一、明确覆盖式路径的目标二、静态/动态全覆盖路径规划相关技术研究(1)静态全覆盖路径规划方法一:波前WaveFront 覆盖算法方法二:图形学映射算…...

Java 实现集成 Google 邮箱第三方登录实践

文章目录 前言前期准备配置客户端 ID 和重定向 URL配置 OAuth 权限请求页面 登录流程前端演示代码后端演示代码 总结个人简介 前言 Google OAuth 2.0 是其中一种常见的第三方登录方式&#xff0c;广泛应用于各类网站和应用程序。通过 Google OAuth 2.0&#xff0c;用户可以使用…...

人人都在学的智能体(AI Agent),带你轻松入门!

一、智能体初认知 AI 智能体&#xff08;英文&#xff1a;AI Agent&#xff09;究竟是个啥 先讲个故事 想象一下&#xff0c;你有一个特别能干的虚拟助手&#xff0c;我们叫他小明。小明不是普通人&#xff0c;他是一个智能体&#xff0c;就像一个超级版的 Siri 或者小爱同学&…...

如何在Windows环境下开启Kibana的非localhost访问

Kibana是一个开源的分析和可视化平台&#xff0c;用于探索和可视化Elasticsearch数据。默认情况下&#xff0c;Kibana仅允许在本地访问&#xff0c;但通过一些简单的配置更改&#xff0c;你可以允许远程访问。在本文中&#xff0c;我们将介绍如何在Windows环境下开启Kibana的非…...

蓝桥杯 单片机 DS1302和DS18B20

DS1302 时钟 时钟试题 常作为实验室考核内容 控制三个引脚 P17 时钟 P23输入 P13复位 其他已经配置好 寄存器原理 定位地址 0x80地址 固定格式 0x57 5*107*1 57 小时写入格式 不同 首位区分 A上午 P下午 0为24小时制 1为12小时制 写入8小时 0x87 //1000 7 十二小时制 7…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...