堆(堆排序,TOP K, 优先级队列)

1 概念解释
堆的定义:堆是一颗完全二叉树,分为大堆和小堆
大堆:一棵树中,任何父亲节点都大于等于孩子的节点,大堆的根结点最大
小堆:一棵树中,任何父亲节点都小于等于孩子节点,小堆的根节点最小
TOP K问题(元素个数远远大于K)
要求:从N个数中找出前K个最大的数(N >> K)
方法一: 假设是从100个数中找前10个最大的数,先用快速排序法对数据进行降序,前十个就是最大的,时间复杂度O(NlogN)
方法二: 将N个数依次push到大堆中,那么堆顶的元素肯定是最大的,然后pop K次,就找到了前K个最大的数,时间复杂度O(N+k*log2N后面会再次证明)。
那这是Topk问题吗?, 不完全是,
Topk问题的前提是: N非常大,若N为10亿、20亿,内存中无法存下这些数,只能存储在磁盘中,那上面的两种方式就不适用了
思路打开,可以先将前K个数建为小堆。
首先将前K个数建立成小堆, 然后将剩下N-K个数不断和堆顶比较,将大于堆顶的元素放入堆中,后然后向下调整后,最后堆中的K个数就是前K个最大的数。
时间复杂度为:K+(N-K)* logK 也就是O(NlogK)
注意:这里建立的是小堆而不是大堆。
因为如果是大堆,那么堆顶的数是堆中最大的,和剩下的N-K个数比较时,如果当前堆顶的数就是N个数中最大的,那么就把后面的数都挡在堆外了。这种只能找到N个数中最大的数。
总结:
TopK问题:通过建小堆,找到N个数中最大的前K个,建大堆,找到N个数中最小的前K个
堆排序:排升序建大堆,排降序建小堆
2 代码实现
建立堆的规则:
若下标从1开始时,其节点的计算为如下(树中第一个非叶子节点直接为len(最后一个节点的索引)/2)
若下标从0开始时,计算父节点,为**(当前索引 - 1) / 2**,左孩子:当前索引 × 2 +1;右孩子2: 当前索引 ×2 + 2
定义:
int parent(int root){return root / 2;
}
int left(int root){return root * 2;
}
int right(int root){return root * 2 + 1;
}
上浮:
//上浮public void swim(int low, int high){ //将[low...high]上浮为大顶堆,从high开始,由下往上int i = high, j = i / 2;while (j >= low){if (a[i] > a[j]){int temp = a[j];a[j] = a[i];a[i] = temp;i = j;j = i /2;}else {break;}}}
下沉:
//下沉public void sink(int low, int high){ //将[low...high]下沉为大顶堆,从low开始,由上往下int i = low, j = 2 * low;while (j <= high){if (j + 1 <= high && a[j] < a[j+1]){j++;}if (a[j] > a[i]){int temp = a[i];a[i] = a[j];a[j] = temp;i = j;j = 2 * i;}else {break;}}}
插入:
public void insert(int num){ //插入操作,插到堆的尾部,然后进行上浮size++;a[size] = num;swim(1,size);}
下沉:
public int delMax(){ //去除堆顶元素,删除堆的顶部元素,然后进行下沉int temp = a[1];a[1] = a[size];size--;sink(1,size);return temp;}
建堆(第一种是调用插入函数,从空开始建堆,是向上调整。第二种是提供现成的元素数组,从最后一个非叶子节点,向下调整)
static void TreeeAdjust(int a[], int low, int high){ //本质还是下沉操作,对low所指元素下沉int i = low, j = 2 * low + 1; //i表示父节点,j表示左孩子,下标从0开始 while(j <= high){if (j + 1 <= high && a[j] <= a[j+1]){ //j指向左右孩子较大的那个j++;}//开始下沉if(a[i] < a[j]){ //什么时候下沉,大顶堆-》当父节点小于子节点时;小顶堆-》当父节点大于子节点时下沉int temp = a[i];a[i] = a[j];a[j] = temp;i = j;j = 2 * i + 1;}else {break;}}}public static void bulidBigTree (int[] arr){ //构造大顶堆int len = arr.length-1;for (int i = len/2 - 1; i >= 0; i--){TreeeAdjust(arr, i, len);}}public static void sortBigTree(int[] arr){ //堆排序,交换元素以维持堆的定义。int len = arr.length;int i = len - 1;while (i >= 0){int temp = arr[i];arr[i] = arr[0];arr[0] = temp;i--;TreeeAdjust(arr, 0,i);}}
堆排序问题
升序:建大顶堆,然后交换堆顶和堆尾元素,重复调用下沉操作
降序:建大顶堆,然后交换堆顶和队尾元素,重复调用下沉操作(两次下沉结构一样,判断条件不同)
大堆:
static void TreeeAdjust(int a[], int low, int high){ //本质还是下沉操作int i = low, j = 2 * low + 1; //i表示父节点,j表示左孩子,下标从0开始while(j <= high){if (j + 1 <= high && a[j] <= a[j+1]){j++;}if(a[i] < a[j]){ //什么时候下沉,大顶堆-》当父节点小于子节点时;小顶堆-》当父节点大于子节点时下沉int temp = a[i];a[i] = a[j];a[j] = temp;i = j;j = 2 * i + 1;}else {break;}}}public static void bulidBigTree (int[] arr){ //构造大顶堆int len = arr.length-1;for (int i = len/2 - 1; i >= 0; i--){TreeeAdjust(arr, i, len);}}public static void sortBigTree(int[] arr){ //堆排序,交换元素以维持堆的定义。int len = arr.length;int i = len - 1;while (i >= 0){int temp = arr[i];arr[i] = arr[0];arr[0] = temp;i--;TreeeAdjust(arr, 0,i);}}
建立大堆和小堆关键的区别就在于下沉操作的判断条件

(将圈中的判断改成<就变成小堆)
大堆下沉: 当父节点小于子节点时(和较大的子节点交换位置)
小堆下沉:当父节点大于子节点时(和较小的子节点交换位置)
大堆上升:子节点大于父节点(直接判断)
小堆上升:当子节点小于父节点(直接判断)
每次分析时(按照这个最小的单位进行分析上浮和下沉)

3优先级队列
Java 优先队列 PriorityQueue
- Java 优先队列默认是小顶堆,小的先出队。
PriorityQueue<Integer> pq = new PriorityQueue<>()
建立大顶堆:
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b)->(b-a));
2.其他排序规则
//将pair按照key从大到小排序,key相同情况下,按照value从小到大排序。PriorityQueue<Pair<Integer, Integer>> pq = new PriorityQueue<>(n, new Comparator<Pair<Integer, Integer>>() {public int compare(Pair<Integer, Integer> o1, Pair<Integer, Integer> o2) {if(o1.getKey() - o2.getKey() < 0) {return 1;} else if(o1.getKey() - o2.getKey() == 0){if(o1.getValue() - o2.getValue() < 0) {return -1;} else {return 1;}}return -1;}});
// 在数组情况下,pair的key为数组值,value为下标,
// 实现上述排序的一种巧妙做法。注:nums[] 为数组
PriorityQueue<Integer> pqMin = new PriorityQueue<>(new Comparator<Integer>() {public int compare(Integer o1, Integer o2) {if(nums[o1] - nums[o2] < 0) {return -1;} else if(nums[o1] - nums[o2] == 0){if(o1 - o2 < 0) {return -1;}}return 1;}});PriorityQueue<Integer> pqMax = new PriorityQueue<>(new Comparator<Integer>() {public int compare(Integer o1, Integer o2) {if(nums[o1] - nums[o2] > 0) {return -1;} else if(nums[o1] - nums[o2] == 0){if(o1 - o2 > 0) {return -1;}}return 1;}});//Lambda表达式PriorityQueue<Integer> pq = new PriorityQueue<>((a, b)->(b-a));
优先队列常用方法
public boolean add(E e); //在队尾插入元素,插入失败时抛出异常,并调整堆结构
public boolean offer(E e); //在队尾插入元素,插入失败时抛出false,并调整堆结构public E remove(); //获取队头元素并删除,并返回,失败时前者抛出异常,再调整堆结构
public E poll(); //获取队头元素并删除,并返回,失败时前者抛出null,再调整堆结构public E element(); //返回队头元素(不删除),失败时前者抛出异常
public E peek();//返回队头元素(不删除),失败时前者抛出nullpublic boolean isEmpty(); //判断队列是否为空
public int size(); //获取队列中元素个数
public void clear(); //清空队列
public boolean contains(Object o); //判断队列中是否包含指定元素(从队头到队尾遍历)
public Iterator<E> iterator(); //迭代器
插入元素 offer()方法,返回值boolean,再次调整堆结构
删除元素 poll()方法,返回堆顶元素,再次调整堆结构
获取堆头元素 peek()方法,返回堆顶元素
判断队列是否为空** isEmpty(); **
获取队列中元素个数**size(); **
判断队列中是否包含指定元素(从队头到队尾遍历)**contains(Object o); **
参考链接:
https://blog.csdn.net/weixin_46016019/article/details/123774875
相关文章:
堆(堆排序,TOP K, 优先级队列)
1 概念解释 堆的定义:堆是一颗完全二叉树,分为大堆和小堆 大堆:一棵树中,任何父亲节点都大于等于孩子的节点,大堆的根结点最大 小堆:一棵树中,任何父亲节点都小于等于孩子节点,小堆…...
(三)行为模式:11、模板模式(Template Pattern)(C++示例)
目录 1、模板模式含义 2、模板模式的UML图学习 3、模板模式的应用场景 4、模板模式的优缺点 5、C实现的实例 1、模板模式含义 模板模式(Template Method Pattern)是一种行为设计模式,它定义了一个操作中的算法骨架,将某些步骤…...
贝叶斯中的充分统计量
内容来源 贝叶斯统计(第二版)中国统计出版社 前两篇笔记简述经典统计中的充分统计量和判断充分统计量的 N e y m a n Neyman Neyman 因子分解定理 而在贝叶斯统计中,充分统计量也有一个充要条件 定理兼定义 设 x ( x 1 , x 2 , ⋯ , x …...
012:ArcGIS Server 10.2安装与站点创建教程
摘要:本文详细介绍地理信息系统服务器软件ArcGIS Server 10.2的安装与站点创建流程。 一、软件介绍 ArcGIS Server 10.2是Esri公司开发的一款强大的地理信息系统(GIS)服务器软件。它支持发布和共享地图、地理数据处理服务及空间分析功能&…...
xlive.dll错误的详细解决办法步骤教程,xlive.dll基本状况介绍
在计算机的众多文件中,“xlive.dll”扮演着独特而重要的角色。所以当你的电脑丢失了xlive.dll文件时,会倒是电脑不能正常运行,那么出现这样的问题有什么办法可以将丢失的xlive.dll进行修复呢?今天这篇文章将和大家聊聊xlive.dll错…...
通俗易懂的餐厅例子来讲解JVM
餐厅版本 JVM(Java虚拟机)可以想象成一个虚拟的计算机,它能够运行Java程序。为了让你更容易理解,我们可以用一个餐厅的比喻来解释JVM: 菜单(Java源代码): 想象一下,Java…...
Python从入门到高手7.3节-列表的常用操作方法
目录 7.3.1 列表常用操作方法 7.3.2 列表的添加 7.3.3 列表的查找 7.3.4 列表的修改 7.3.5 列表的删除 7.3.6 与列表有关的其它操作方法 7.3.7 与10月说再见 7.3.1 列表常用操作方法 列表类型是一种抽象数据类型,抽象数据类型定义了数据类型的操作方法。在本…...
Prompt提示词设计:如何让你的AI对话更智能?
Prompt设计:如何让你的AI对话更智能? 在人工智能的世界里,Prompt(提示词)就像是一把钥匙,能够解锁AI的潜力,让它更好地理解和响应你的需求。今天,我们就来聊聊如何通过精心设计的Pr…...
2024-10月的“冷饭热炒“--解读GUI Agent 之computer use?phone use?——多模态大语言模型的进阶之路
GUI Agent 之computer use?phone use?——多模态大语言模型的进阶之路 1.最新技术事件浅析三、思考和方案设计工具代码部分1.提示词2.工具类API定义,这里主要看computer tool就够了 总结 本文会总结概括这一应用的利弊,然后给出分析和工具代…...
Me 攒的GPT修改论文提示词
没有会员的GPT They demonstrated that QGAN exhibits an exponential advantage over classical methods when using data consisting of samples of measurements made on high-dimensional spaces. 作为related work 时态对吗? 有需要修改的吗?你可…...
关于在vue2中接受后端返回的二进制流并进行本地下载
后端接口返回: 前端需要在两个地方写代码: 1.封装接口处,responseType: blob 2.接收相应处 download() {if (this.selectionList.length 0) {this.$message.error("请选择要导出的数据!");} else {examineruleExport…...
[BUG]warn(f“Failed to load image Python extension: {e}“)的解决办法
在使用LlaMa-Factory工具包时,安装好环境后,输入llamafactory-cli env查看llama-factory的版本等信息时,bash提醒: /home/ubuntu/anaconda3/envs/Llama-Factory/lib/python3.10/site-packages/torchvision/io/image.py:13: UserW…...
配置MUX VLAN 的实验配置
概念和工作原理: MUX VLAN(Multiplex VLAN)是一种高级的VLAN技术,它通过在交换机上实现二层流量隔离和灵活的网络资源控制,提供了一种更为细致的网络管理方式。 概念与工作原理 基本概念: MUX VLAN通过定义主VLAN&am…...
高考相关 APP 案例分享
文章首发于https://qdgithub.com/article/2032 一、核心内容 (一)高考相关 APP 案例 圈友朱康分享高考相关的 APP。提到猿题库,其主要功能有练习册和猿辅导,都是收费的。猿题库出题给学生练习,将易错的总结起来出练习…...
AI的出现对计算机相关类型的博客或论坛的影响
最近越来越感觉到,AI的出现对计算机相关类型的博客是一种从寄生再到蚕食的过程。 在AI没出现之前,大家遇到问题,那一般都是去百度搜索,然后就能找到大神前辈的解答思路,这些解答思路基本都是写在博客或者论坛里的&…...
[LeetCode] 784. 字母大小写全排序
题目描述: 给定一个字符串 s ,通过将字符串 s 中的每个字母转变大小写,我们可以获得一个新的字符串。 返回 所有可能得到的字符串集合 。以 任意顺序 返回输出。 示例 1: 输入:s "a1b2" 输出࿱…...
大数据Azkaban(二):Azkaban简单介绍
文章目录 Azkaban简单介绍 一、Azkaban特点 二、Azkaban组成结构 三、Azkaban部署模式 1、solo-server ode(独立服务器模式) 2、two server mode(双服务器模式) 3、distributed multiple-executor mode(分布式多…...
Vue3_开启全局websocket
1、封装websocket 新建文件夹"socket.ts",路径:"/utils/socket" export default (onMessage: Function) > {let socketUrl ws://171.29.8.218:8080/ems/ws/screen //socket请求地址let socket: WebSocketlet lockReconnect f…...
PTA 社交集群
当你在社交网络平台注册时,一般总是被要求填写你的个人兴趣爱好,以便找到具有相同兴趣爱好的潜在的朋友。一个“社交集群”是指部分兴趣爱好相同的人的集合。你需要找出所有的社交集群。 输入格式 输入在第一行给出一个正整数 N(≤1000&…...
USB Type-C 受电端取电快充协议芯片,支持PD+QC+FCP+SCP+AFC快充协议
前言 随着科技的飞速发展,电子设备对于快速充电的需求日益增加。为了满足这一需求,市场上涌现出了众多快充技术和产品。其中,XSP08Q诱骗取电芯片以其卓越的性能和广泛的应用场景,成为了快充领域的一颗璀璨明星。本文将对XSP08Q P…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
