【Kaggle | Pandas】练习2:索引,选择和分配
文章目录
- 数据总表
- 1、读取列
- 2、读取某列的第几行的值
- 3、第一行数据
- 4、读取列中前10个值
- 5、读取索引标签为1 、 2 、 3 、 5和8的记录
- 6、包含索引标签为0 、1 、10和100的记录的country 、province 、 region_1和region_2列
- 7、 前 100 条记录的country和variety列
- 8、包含Italy葡萄酒评论的 DataFrame italian_wines
- 9、包含来自澳大利亚或新西兰的葡萄酒的至少 95 分(满分 100 分)的所有评论
数据总表
reviews.head()

1、读取列
从reviews中选择description列并将结果分配给变量desc
# Your code here
desc = reviews.description
2、读取某列的第几行的值
从reviews的描述列中选择第一个值,将其分配给变量first_description
first_description = desc.iloc[0]
3、第一行数据
从reviews中选择第一行数据(第一条记录),并将其分配给变量first_row
first_row = reviews.loc[0,:]
4、读取列中前10个值
从reviews中的description列中选择前 10 个值,将结果分配给变量first_descriptions
first_descriptions = reviews.description.iloc[:10]first_descriptions

5、读取索引标签为1 、 2 、 3 、 5和8的记录
选择索引标签为1 、 2 、 3 、 5和8的记录,并将结果分配给变量sample_reviews

sample_reviews = reviews.iloc[[1,2,3,5,8],:]sample_reviews

6、包含索引标签为0 、1 、10和100的记录的country 、province 、 region_1和region_2列
创建一个变量df其中包含索引标签为0 、 1 、 10和100的记录的country 、 province 、 region_1和region_2列。换句话说,生成以下 DataFrame

df = reviews.loc[[0, 1, 10, 100], ['country', 'province', 'region_1', 'region_2']]
df

# 官方代码
cols = ['country', 'province', 'region_1', 'region_2']
indices = [0, 1, 10, 100]
df = reviews.loc[indices, cols]
7、 前 100 条记录的country和variety列
创建一个变量df其中包含前 100 条记录的country和variety列。
提示:您可以使用loc或iloc 。在回答这个问题以及接下来的几个问题时,请保留教程中描述的以下“陷阱”:
iloc使用 Python stdlib 索引方案,其中包含范围的第一个元素并排除最后一个元素。同时, loc包含索引。
当 DataFrame 索引是一个简单的数字列表(例如0,…,1000时,这尤其令人困惑。在这种情况下df.iloc[0:1000]将返回 1000 个条目,而df.loc[0:1000]返回其中的 1001 个!要使用loc获取 1000 个元素,您需要降低一级并请求df.iloc[0:999] 。
# loc包含索引
df = reviews.loc[:99, ['country', 'variety']]
df
或者
# iloc不包含索引,且只能使用数字作为索引
# 不能使用该写法错误:df = reviews.iloc[:100, ['country', 'variety']]df = reviews.iloc[:100, [0, 11]]
df
iloc:基于位置索引选择
iloc 是基于整数位置(即位置索引)来选择数据。
适用于需要按行、列的数字位置索引进行定位的场景。
索引从 0 开始,例如 iloc[0] 选择的是第一行。loc:基于标签索引选择
loc 是基于标签索引(即行或列的名称)来选择数据。
适用于已知标签的场景,比如使用行名称或列名称来提取数据。

官方代码
cols = ['country', 'variety']
df = reviews.loc[:99, cols]
orcols_idx = [0, 11]
df = reviews.iloc[:100, cols_idx]
8、包含Italy葡萄酒评论的 DataFrame italian_wines
创建一个包含Italy葡萄酒评论的 DataFrame italian_wines 。提示: reviews.country等于什么?
italian_wines = reviews.loc[reviews.country == 'Italy']
9、包含来自澳大利亚或新西兰的葡萄酒的至少 95 分(满分 100 分)的所有评论
创建一个 DataFrame top_oceania_wines ,其中包含来自澳大利亚或新西兰的葡萄酒的至少 95 分(满分 100 分)的所有评论
top_oceania_wines = reviews.loc[((reviews.country == 'Australia') | (reviews.country =='New Zealand')) & (reviews.points >= 95) ]
top_oceania_wines

官方代码
top_oceania_wines = reviews.loc[(reviews.country.isin(['Australia', 'New Zealand']))& (reviews.points >= 95)
]
相关文章:
【Kaggle | Pandas】练习2:索引,选择和分配
文章目录 数据总表1、读取列2、读取某列的第几行的值3、第一行数据4、读取列中前10个值5、读取索引标签为1 、 2 、 3 、 5和8的记录6、包含索引标签为0 、1 、10和100的记录的country 、province 、 region_1和region_2列7、 前 100 条记录的country和variety列8、包含Italy葡…...
【flask】 flask redis的使用
目的:如何使用在flask web项目中连接redis,并简单的使用 使用的库包:flask-redis pip install falsk-redis下面的写法是对项目代码进行模块化拆分的写法,在app.py中只进行对象的初始化等操作;exts.py中创建对象&…...
【Unity基础】Unity中的特殊文件夹详解
在Unity项目中,通常可以根据需要创建任意名称的文件夹来组织项目内容,但有一些特定的文件夹名称会触发Unity对其中资源和脚本的特殊处理。这篇文章将详细介绍这些特殊文件夹,帮助开发者在项目中合理地使用它们。 1. Assets 文件夹 Assets文…...
矩阵蠕虫,陈欣出品
第一章 陈欣是一名资深的软件工程师,专门从事分布式系统和人工智能的研究。她的最新项目叫做“MatrixWorm”,目标是创建一个简单而强大的远程控制系统。在这个系统中,控制端可以通过文字命令,让被控制端利用大语言模型的能力来理…...
python 爬虫 入门 五、抓取图片、视频
目录 一、图片、音频 二、下载视频: 一、图片、音频 抓取图片的手法在上一篇python 爬虫 入门 四、线程,进程,协程-CSDN博客里面其实有,就是文章中的图片部分,在那一篇文章,初始代码的28,29行…...
ubantu 编译安装ceph 18.2.4
下载ceph代码 git clone https://github.com/ceph/ceph.git #切换tag git checkout v18.2.4 -b v18.2.4 #下载子模块 会有报错重新执行即可 git submodule update --init --recursive安装ceph所需要的依赖 #curl命令安装 sudo apt install curl#安装ceph依赖 ./install-deps.…...
哈希封装“unordered_set·map“
本文与对setmap的封装高度相似,可以参考我之前的对setmap封装的文章: 链接:(没看过的话就点点我吧😚😚😚😚😚😚😚😚😚&am…...
Bi-LSTM-CRF实现中文命名实体识别工具(TensorFlow)
项目源码获取方式见文章末尾! 回复暗号:13,免费获取600多个深度学习项目资料,快来加入社群一起学习吧。 **《------往期经典推荐------》**项目名称 1.【MobileNetV2实现实时口罩检测tensorflow】 2.【卫星图像道路检测DeepLabV3P…...
从JDK 17 到 JDK 21:Java 新特性
JDK17 密封类 概念:密封类允许开发者控制哪些类可以继承或实现特定的类或接口。通过这种方式,密封类为类的继承提供了更高的安全性和可维护性。 定义:使用sealed代表该类为密封类,并用permits限制哪些类可以继承。 public sea…...
【计算机网络 - 基础问题】每日 3 题(五十七)
✍个人博客:https://blog.csdn.net/Newin2020?typeblog 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞…...
第十二章 章节练习created的应用
目录 一、引言 二、运行效果图 三、完整代码 一、引言 构建一个新闻的页面,页面在响应式数据准备好之后(即created),就向后台接口请求获取新闻数据列表,然后赋值给Vue实例中的list列表,这个请求逻辑我…...
Unity 游戏性能优化实践:内存管理与帧率提升技巧
1. 引言 随着移动设备性能的逐步提升,游戏玩家对画质和流畅度的要求越来越高。优化 Unity 游戏性能不仅可以提升用户体验,还能降低设备的功耗,延长电池寿命。这篇文章将深入探讨如何在 Unity 中优化游戏的内存管理与帧率,通过多方…...
C++游戏开发详解
C 是一种广泛使用的编程语言,尤其在游戏开发领域有着不可替代的地位。它提供了对底层硬件的直接访问能力,允许开发者优化性能,这对于追求高帧率和低延迟的游戏来说至关重要。本文将详细介绍使用 C 进行游戏开发的基础知识和技术要点ÿ…...
三、大模型(LLMs)微调面
本文精心汇总了多家顶尖互联网公司在大模型基础知识考核中的核心考点,并针对这些考点提供了详尽的解答。并提供电子版本,见于文末百度云盘链接中,供读者查阅。 一、大模型微调 • 1 如果想要在某个模型基础上做全参数微调,究竟需要…...
Flutter升级与降级
升级 版本升级 // 升级到指定版本flutter upgrade 版本号// 升级到最新版本flutter upgrade 降级 1.需要先确定想要降级的版本号。 2.切换到系统安装Flutter的目录 3.在https://github.com/flutter/flutter,找到要回退的版本号对应的commit序号(具…...
分布式并发场景的核心问题与解决方案
文章目录 分布式并发场景的核心问题与解决方案一、核心问题分析1. 分布式事务问题2. 数据一致性问题3. 并发控制问题4. 分布式锁失效问题 二、解决方案1. 分布式事务解决方案1.1 可靠消息最终一致性方案1.2 TCC方案实现 2. 缓存一致性解决方案2.1 延迟双删策略2.2 Canal方案 3.…...
D - Many Segments 2(ABC377)
题意:给定n和m,给定n个区间li,ri,求出满足区间lr不完全包含区间liri的个数 分析:用优先队列对区间r进行排序,i表示左区间,每次找到右区间加入即可。 代码: #include<bits/stdc…...
数组指针和指针数组的区别
数组指针和指针数组的区别 根据我个人的理解如下: 数组指针:指向数组的指针。着重点在于最后的指针两个字。 指针数组: 所有元素都是指针的数组。着重点在于最后的数组两个字。 另外来看助手的回答: Kimi: 1. **数组指针(Ar…...
【VUE点击父组件按钮,跳转到子组件】
要实现在Vue中,父组件通过点击按钮进入子组件的 <el-dialog> 弹窗,并在弹窗中嵌套 <el-table> 表格,可以按照以下步骤进行编写代码: 在父组件中,定义一个数据属性用于控制子组件弹窗的显示与隐藏。 data…...
Java列表排序:方法与实践
在Java编程中,列表排序是一个常见且重要的任务。本文将介绍Java中对列表进行排序的几种方法,包括使用Collections.sort()、List.sort()以及自定义排序规则。 1. 使用Collections.sort() Collections.sort()是Java提供的一个静态方法,用于对…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
