当前位置: 首页 > news >正文

双曲函数(Hyperbolic functuons)公式

  在python等语言里有双曲函数库和反双曲函数库,但是并没有包含所有的双曲函数。以numpy为例子,numpy只提供了sinh、cosh、tanh、arcsinh、arccosh、arctanh六种函数,那么其余的就需要用公式计算了。

转换公式

  对于函数库不能直接计算的,我整理出了计算公式:
coth ⁡ x = 1 tanh ⁡ x s e c h x = 1 cosh ⁡ x c s c h x = 1 sinh ⁡ x a r c c o t h x = a r c t a n ( 1 x ) a r c s e c h x = a r c c o s ( 1 x ) a r c c s c h x = a r c s e c ( 1 x ) \coth x = \frac1{\tanh x} \\ sech\thinspace x = \frac1{\cosh x} \\ csch\thinspace x = \frac1{\sinh x} \\ arccoth\thinspace x = arctan (\frac1x)\\ arcsech\thinspace x = arccos (\frac1x)\\ arccsch\thinspace x = arcsec(\frac1x) cothx=tanhx1sechx=coshx1cschx=sinhx1arccothx=arctan(x1)arcsechx=arccos(x1)arccschx=arcsec(x1)

导数公式

  对双曲函数和反双曲函数求导的公式也非常重要,必须要背诵下来。
d d x ( sinh ⁡ x ) = cosh ⁡ x d d x ( cosh ⁡ x ) = sinh ⁡ x d d x ( tanh ⁡ x ) = s e c h 2 x d d x ( coth ⁡ x ) = − c s c h 2 x d d x ( s e c h x ) = − s e c h x t a n h x d d x ( c s c h x ) = − c s c h x c o t h x \frac{d}{dx}(\sinh x)=\cosh x\\ \frac{d}{dx}(\cosh x)=\sinh x\\ \frac{d}{dx}(\tanh x)=sech^2\thinspace x\\ \frac{d}{dx}(\coth x)=-csch^2\thinspace x\\ \frac{d}{dx}(sech x)= -sech\thinspace x \thinspace tanh\thinspace x\\ \frac{d}{dx}(csch x)= -csch\thinspace x \thinspace cot h\thinspace x\\ dxd(sinhx)=coshxdxd(coshx)=sinhxdxd(tanhx)=sech2xdxd(cothx)=csch2xdxd(sechx)=sechxtanhxdxd(cschx)=cschxcothx
  接下来是反双曲函数inverse hyperbolic functions的导数公式:
d d x ( a r c s i n h x ) = 1 x 2 + 1 d d x ( a r c c o s h x ) = 1 x 2 − 1 , x > 1 d d x ( a r c t a n h x ) = 1 1 − x 2 d d x ( a r c c o t h x ) = 1 1 − x 2 d d x ( a r c s e c h x ) = − 1 x 1 − x 2 d d x ( a r c c o s h x ) = − 1 ∣ x ∣ 1 + x 2 \frac{d}{dx}(arcsinh \thinspace x)=\frac1{\sqrt{x^2+1}}\\ \frac{d}{dx}(arccosh \thinspace x)=\frac1{\sqrt{x^2-1}},x > 1\\ \frac{d}{dx}(arctanh \thinspace x)=\frac1{{1-x^2}}\\ \frac{d}{dx}(arccoth \thinspace x)=\frac1{{1-x^2}}\\ \frac{d}{dx}(arcsech \thinspace x)=-\frac1{x\sqrt{1-x^2}}\\ \frac{d}{dx}(arccosh \thinspace x)=-\frac1{|x|\sqrt{1+x^2}}\\ dxd(arcsinhx)=x2+1 1dxd(arccoshx)=x21 1,x>1dxd(arctanhx)=1x21dxd(arccothx)=1x21dxd(arcsechx)=x1x2 1dxd(arccoshx)=x1+x2 1

积分公式

  上面这些求导公式,反推一下就是积分公式了,但是有些特殊的积分公式,不能直接推导出来,需要记忆:
∫ d x a 2 + x 2 = a r c s i n h ( x a ) + C , a > 0 ∫ d x x 2 − a 2 = a r c c o s h ( x a ) + C , x > a > 0 ∫ d x a 2 − x 2 = { 1 a a r c t a n h ( x a ) + C , x 2 < a 2 1 a a r c c o t h ( x a ) + C , x 2 > a 2 ∫ d x x a 2 − x 2 = − 1 a a r c s e c h ( x a ) + C , 0 < x < a ∫ d x x a 2 + x 2 = − 1 a a r c c s c h ∣ x a ∣ + C , x ≠ 0 , a > 0 \int\frac{dx}{\sqrt{a^2+x^2}}= arcsinh \thinspace (\frac{x}{a})+C,a>0\\ \int\frac{dx}{\sqrt{x^2-a^2}}= arccosh \thinspace (\frac{x}{a})+C,x>a>0\\ \int\frac{dx}{a^2-x^2}= \begin{cases} \frac1a \thinspace arctanh \thinspace (\frac{x}{a})+C,x^2<a^2\\ \frac1a \thinspace arccoth \thinspace (\frac{x}{a})+C,x^2>a^2\\ \end{cases}\\ \int\frac{dx}{x\sqrt{a^2-x^2}}=-\frac1a arcsech \thinspace (\frac{x}{a})+C,0<x<a\\ \int\frac{dx}{x\sqrt{a^2+x^2}}=-\frac1a arccsch \thinspace \lvert \frac{x}{a}\rvert+C,x \neq 0, a>0 a2+x2 dx=arcsinh(ax)+C,a>0x2a2 dx=arccosh(ax)+C,x>a>0a2x2dx={a1arctanh(ax)+C,x2<a2a1arccoth(ax)+C,x2>a2xa2x2 dx=a1arcsech(ax)+C,0<x<axa2+x2 dx=a1arccschax+C,x=0,a>0

恒等式

  最后,我再整理一点恒等式:
c o s h 2 x − s i n h 2 x = 1 s i n h x = 2 s i n h x c o s h x c o s h x = s i n h 2 x + c o s h 2 x c o s h 2 x = c o s h 2 x + 1 2 s i n h 2 x = c o s h 2 x − 1 2 t a n h 2 x = 1 − s e c h 2 x c o t h 2 x = 1 + c s c h 2 x cosh^2 \thinspace x -sinh^2 \thinspace x = 1\\ sinh\thinspace x = 2sinh\thinspace x \thinspace cosh\thinspace x \\ cosh\thinspace x = sinh^2\thinspace x \thinspace + cosh^2\thinspace x \\ cosh^2\thinspace x = \frac{cosh\thinspace 2x +1}2\\ sinh^2\thinspace x = \frac{cosh\thinspace 2x -1}2\\ tanh^2\thinspace x = 1-sech^2x\\ coth^2\thinspace x = 1+csch^2x\\ cosh2xsinh2x=1sinhx=2sinhxcoshxcoshx=sinh2x+cosh2xcosh2x=2cosh2x+1sinh2x=2cosh2x1tanh2x=1sech2xcoth2x=1+csch2x

相关文章:

双曲函数(Hyperbolic functuons)公式

在python等语言里有双曲函数库和反双曲函数库&#xff0c;但是并没有包含所有的双曲函数。以numpy为例子&#xff0c;numpy只提供了sinh、cosh、tanh、arcsinh、arccosh、arctanh六种函数&#xff0c;那么其余的就需要用公式计算了。 转换公式 对于函数库不能直接计算的&#…...

【CSS/SCSS】@layer的介绍及使用方法

目录 基本用法layer 的作用与优点分离样式职责&#xff0c;增强代码可读性和可维护性防止无意的样式冲突精确控制样式的逐层覆盖提高复用性 兼容性实际示例&#xff1a;使用 import 管理加载顺序实际示例&#xff1a;混入与 layer 结合使用 layer 是 CSS 中用于组织和管理样式优…...

我为什么投身于青少年AI编程?——打造生态圈(三)

第五部分 青少年AI编程生态圈 一、生态圈 主要涵盖家庭、社区/中小学、高校高职、主管部门。 1、家庭 我们与社区/中小学一道打造让家长满意的模式。 教得好&#xff1a; 费用少&#xff1a; 家门口&#xff1a; 2、社区/中小学 社区党群服务中心和中小学都有大面积科普…...

出海要深潜,中国手机闯关全球化有了新标杆

经济全球化的大势之下&#xff0c;中国科技企业开拓海外市场已成为一种必然选择。 对于国内手机企业来说&#xff0c;推进全球商业版图扩张&#xff0c;业务潜力巨大&#xff0c;海外市场是今后的关键增长引擎。 当前中国手机厂商在海外市场的发展&#xff0c;有收获也有坎坷…...

百度SEO中的关键词密度与内容优化研究【百度SEO专家】

大家好&#xff0c;我是百度SEO专家&#xff08;林汉文&#xff09;&#xff0c;在百度SEO优化中&#xff0c;关键词密度和关键词内容的优化对提升页面排名至关重要。关键词的合理布局与内容的质量是确保网页在百度搜索结果中脱颖而出的关键因素。下面我们将从关键词密度和关键…...

如何用fastapi集成pdf.js 的viewer.html ,并支持 mjs

fastapi 框架 集成pdf.js 的 viewer.html?file=***,支持跨域,支持.mjs .wasm .pdf 给出完整示例代码 要在 FastAPI 框架中集成 pdf.js 的 viewer.html,并支持跨域访问以及 .mjs、.wasm、.pdf 文件的正确加载,可以按照以下步骤进行。下面提供一个完整的示例,包括项目结构…...

文件相对路径与绝对路径

前言&#xff1a; 在写代码绘制图像的过程中&#xff0c;发现出现cant read input file的异常&#xff0c;而且输出框没有绘制图片&#xff0c;所以寻找解决方案。先贴上之前写的简洁版绘制图像代码 1.BackGround类 import java.awt.image.BufferedImage;public class BackG…...

Linux 重启命令全解析:深入理解与应用指南

Linux 重启命令全解析&#xff1a;深入理解与应用指南 在 Linux 系统中&#xff0c;掌握正确的重启命令是确保系统稳定运行和进行必要维护的关键技能。本文将深入解析 Linux 中常见的重启命令&#xff0c;包括功能、用法、适用场景及注意事项。 一、reboot 命令 功能简介 re…...

【北京迅为】《STM32MP157开发板嵌入式开发指南》-第六十七章 Trusted Firmware-A 移植

iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器&#xff0c;既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构&#xff0c;主频650M、1G内存、8G存储&#xff0c;核心板采用工业级板对板连接器&#xff0c;高可靠&#xff0c;牢固耐…...

`a = a + b` 与 `a += b` 的区别

在 Java 中&#xff0c;a a b 和 a b 都用于将 b 的值加到 a 上&#xff0c;但它们之间存在一些重要的区别&#xff0c;尤其是在类型转换和操作行为方面。 使用 操作符时&#xff0c;Java 会自动进行隐式类型转换&#xff0c;而使用 则不会。这意味着在 a b 的情况下&am…...

mysqld.log文件过大,清理后不改变所属用户

#1024程序员节# 一、背景 突然有一天&#xff0c;我的mysql报磁盘不足了。仔细查看才发现&#xff0c;是磁盘满了。而MySQL的日志文件占用了91个G.如下所示&#xff1a; [roothost-172-16-14-128 mysql]# ls -lrth 总用量 93G -rw-r----- 1 mysql mysql 1.1G 7月 30 2023 m…...

v4.7+版本用户充值在交易统计中计算双倍的问题修复

app/services/statistic/TradeStatisticServices.php 文件中 $whereInRecharge[recharge_type] no_system; $whereInRecharge[recharge_type] system; app/model/user/UserRecharge.php 中 修改此搜索器内容 public function searchRechargeTypeAttr($query, $value){ if…...

[GXYCTF 2019]Ping Ping Ping 题解(多种解题方式)

知识点: 命令执行 linux空格绕过 反引号绕过 变量绕过 base64编码绕过 打开页面提示 "听说php可以执行系统函数&#xff1f;我来康康" 然后输入框内提示输入 bjut.edu.cn 输入之后回显信息,是ping 这个网址的信息 输入127.0.0.1 因为提示是命令…...

MODSI EVI 数据的时间序列拟合一阶谐波模型

目录 简介 函数 ee.Reducer.linearRegression(numX, numY) Arguments: Returns: Reducer ee.Image.cat(var_args) Arguments: Returns: Image hsvToRgb() Arguments: Returns: Image 代码 结果 简介 MODIS/006/MOD13A1数据是由美国国家航空航天局(NASA)的MODIS…...

Java:String类(超详解!)

一.常用方法 &#x1f94f;1.字符串构造 字符串构造有三种方法&#xff1a; &#x1f4cc;注意&#xff1a; 1. String是引用类型&#xff0c;内部并不存储字符串本身 如果String是一个引用那么s1和s3应该指向同一个内容&#xff0c;s1和s2是相等的&#xff0c;应该输出两…...

【日志】力扣13.罗马数字转整数 || 解决泛型单例热加载失败问题

2024.10.28 【力扣刷题】 13. 罗马数字转整数 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/roman-to-integer/description/?envTypestudy-plan-v2&envIdtop-interview-150这题用模拟的思想可以给相应的字母赋值&#xff0c;官方的答案用的是用一…...

Mybatis高级

系列文章目录 高级Mybatis&#xff0c;一些结果映射&#xff0c;引入新的注解 目录 系列文章目录 文章目录 一、结果映射 1.ResultType 2.ResultMap 基础应用&#xff1a; 二、一对一 嵌套结果和嵌套查询 嵌套结果 嵌套查询 区别 三、一对多 四、多对多 五、注解补充 1.一对一…...

【spark】spark structrued streaming读写kafka 使用kerberos认证

spark版本:2.4.0 官网 Spark --files使用总结 Spark --files理解 一、编写jar import org.apache.kafka.clients.CommonClientConfigs import org.apache.kafka.common.config.SaslConfigs import org.apache.spark.sql.SparkSession import org.apache.spark.sql.streaming.T…...

【脚本】B站视频AB复读

控制台输入如下代码&#xff0c;回车 const video document.getElementsByTagName("video")[0];//获取bpx-player-control-bottom-center容器,更改其布局方式const div document.getElementsByClassName("bpx-player-control-bottom-center")[0];div.sty…...

leetcode - 257. 二叉树的所有路径

257. 二叉树的所有路径 题目 解决 做法一&#xff1a;深度优先搜索 回溯 深度优先搜索&#xff08;Depth-First Search, DFS&#xff09;是一种用于遍历或搜索树或图的算法。这种搜索方式会尽可能深地探索每个分支&#xff0c;直到无法继续深入为止&#xff0c;然后回溯到上…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...