MMA: Multi-Modal Adapter for Vision-Language Models
两个观察
图1所示。各种基于transformer的CLIP模型中不同层的数据集级识别精度。这个实验是为了确定样本属于哪个数据集。我们用不同的种子运行了三次,并报告了每层识别精度的平均值和标准差。 X E m b e d XEmbed XEmbed是指变压器块之前的文本或图像嵌入层(即自关注层和前馈层[13]), X P r o j XProj XProj是指文本或图像投影层。注意,本实验仅使用来自所有数据集的训练样例进行评估。
如图1所示,我们有两个观测:
Observation-1。在预训练的文本和图像编码器中,较高的层包含可区分的数据集特定表示,而较低的层包含跨不同数据集的可通用表示。这些结果表明,为下游任务调整高层比低层更容易,冻结低层比高层可以保存更多的可泛化知识。
Observation-2。在大多数情况下,文本特征,因为它们是用语义类别名称编码的,在数据集中比视觉特征更容易区分。此外,低层的文本和图像特征之间的间隙比高层的更大。因此,我们认为在文本和图像特征之间对齐较低的层比在较高的层之间对齐更困难,特别是在有限的训练样本下进行调优。
Macro Design(宏观的设计)
新的适配器 A \mathcal{A} A(在下一节中详细介绍)被部分添加到图像和文本编码器的几个更高层中。形式上,对于图像编码器 V \mathcal{V} V,我们从第 k k k个transformer块中添加适配器 A v \mathcal{A}^v Av
这里,下划线表示可训练的块。 α \alpha α是任务特定知识和一般预训练知识之间的平衡系数。显然, α = 0 \alpha=0 α=0在不集成任何额外知识的情况下退化为原始transformer块。同样,我们在文本编码器 τ \tau τ上增加适配器 A t \mathcal{A}^t At
Micro Design(微观设计)
该单元首先使用单独的投影层将每个分支输入投影到具有相同尺寸的特征中。然后,使用一个共享投影层来聚合这些双峰信号,然后使用一个单独的层来匹配每个分支的输出维度。形式上,这个过程可以概括如下:
一个类似的过程被添加到文本编码器如下:
其中, W k w \bm W_{kw} Wkw和 W k d \bm W_{kd} Wkd是图所示的第 k k k个“上”和“下”投影层,其中模态分支用上标突出显示。 W k s \bm W_{ks} Wks是第 k k k个投影层,由Eq.(11)和Eq.(12)中的不同分支共享。重要的是,共享投影作为两个模态之间的桥梁,允许梯度相互传播,从而更好地对齐不同的模态信号。
实验
me:简单的改动,但效果真的很好啊。
结论
以CLIP为例[50]的大规模VLM对下游任务的适应提出了一个巨大的挑战,主要是因为可训练参数的数量庞大,而可用训练样本的规模有限。在本文中,我们提出了一种针对视觉和语言分支设计的多模态适配器(MMA),以增强其各自表示之间的一致性。我们系统地分析了视觉和语言分支跨数据集的特征的判别性和泛化性,因为这两个特征在迁移学习中起着重要的作用,特别是在少样本设置中。基于我们的分析,我们有选择地将MMA引入到特定的更高的transformer层,以实现区分和泛化之间的最佳平衡。我们通过三个代表性任务来评估我们方法的有效性:对新类别的泛化,对新目标数据集的适应,以及看不见的领域转移。与其他先进方法的比较表明,我们的综合性能在所有三种类型的评估中都取得了卓越的表现。
参考资料
论文下载(CVPR 2024)
https://openaccess.thecvf.com/content/CVPR2024/papers/Yang_MMA_Multi-Modal_Adapter_for_Vision-Language_Models_CVPR_2024_paper.pdf
代码地址
https://github.com/ZjjConan/Multi-Modal-Adapter
相关文章:
MMA: Multi-Modal Adapter for Vision-Language Models
两个观察 图1所示。各种基于transformer的CLIP模型中不同层的数据集级识别精度。这个实验是为了确定样本属于哪个数据集。我们用不同的种子运行了三次,并报告了每层识别精度的平均值和标准差。 X E m b e d XEmbed XEmbed是指变压器块之前的文本或图像嵌入层&#x…...
uniapp通过id获取div的宽度,高度,位置等(应该是 任意平台都通用 )
uniapp通过id获取div的宽度,高度,位置等(应该是 任意平台都通用 ) <template><view class"" id"domId"></view> </template>// 如果获取的dome高度等不对,还需要加上延迟…...
Python Transformer 模型的基本原理:BERT 和 GPT 以及它们在情感分析中的应用
Transformer 模型的基本原理:BERT 和 GPT 以及它们在情感分析中的应用 近年来,Transformer 模型在自然语言处理(NLP)领域取得了巨大成功,为任务如翻译、生成文本、问答和情感分析带来了显著的性能提升。本文将介绍 Tr…...
【云原生】Kubernets1.29部署StorageClass-NFS作为存储类,动态创建pvc(已存在NFS服务端)
文章目录 在写redis集群搭建的时候,有提到过使用nfs做storageclass,那时候kubernetes是1.20版本,https://dongweizhen.blog.csdn.net/article/details/130651727 现在使用的是kubernetes 1.29版本,根据之前的修改方式并未生效,反而提示:Error: invalid argument "Re…...
使用 Pandas 进行时间序列分析的 10个关键点
使用Pandas进行时间序列分析的10个关键点(由于篇幅限制,这里调整为10个,但实际操作中可能涉及更多细节)如下: 1. 创建时间序列数据 时间序列数据是指在多个时间点上形成的数值序列。在Pandas中,可以使用t…...
使用 Mermaid 语言描述 AGI 系统架构图
使用Mermaid语言描述AGI系统架构图 一、整体架构概述 以下是一个简化的AGI(Artificial General Intelligence,通用人工智能)系统架构的Mermaid描述。该系统主要包括数据收集与预处理、模型训练、推理与决策以及交互接口等模块,各…...
绘制线性可分支持向量机决策边界图 代码解析
### 绘制线性可分支持向量机决策边界图 def plot_classifer(model, X, y):# 超参数边界x_min -7x_max 12y_min -12y_max -1step 0.05# meshgridxx, yy np.meshgrid(np.arange(x_min, x_max, step),np.arange(y_min, y_max, step))# 模型预测z model.predict(np.c_[xx.ra…...
No.23 笔记 | WEB安全 - 任意文件漏洞 part 5
本文全面且深入地探讨了文件上传漏洞相关知识。从基础概念出发,清晰地阐述了文件上传漏洞的定义及其产生的本质原因,同时列出了该漏洞成立的必要条件。详细说明了文件上传漏洞可能对服务器控制权、网站安全以及业务运营带来的严重危害。 文中还深入解析了…...
EasyPlayer.js网页播放器,支持FLV、HLS、WebSocket、WebRTC、H.264/H.265、MP4、ts各种音视频流播放
EasyPlayer.js功能: 1、支持解码H.264视频(Baseline, Main, High Profile全支持,支持解码B帧视频) 2、支持解码H.265视频(flv id 12) 3、支持解码AAC音频(LC,HE,HEv2 Profile全支持) 4、支持解码MP3音频以及Speex音频格式 5、可…...
WPF数据绑定的五大模式
WPF(Windows Presentation Foundation)是微软推出的一种用于构建Windows用户界面的UI框架。它支持数据绑定,允许开发者将UI元素与数据源绑定,从而实现数据和界面的自动同步。WPF数据绑定有几种不同的模式, 以下是五种…...
从零到一:大学新生编程入门攻略与成长指南
文章目录 每日一句正能量前言编程语言选择:为大学新生量身定制Python:简单而强大的选择JavaScript:Web开发的基石Java:面向对象的经典C#:微软的全能选手 学习资源推荐:编程学习的宝藏在线课程教程和文档书籍…...
详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute
目录 前言1. 基本知识2. Demo 前言 原先的permute推荐阅读:详细分析Pytorch中的permute基本知识(附Demo) 1. 基本知识 transpose 是 PyTorch 中用于交换张量维度的函数,特别是用于二维张量(矩阵)的转置操…...
初识WebGL
思路: 构建<canvas>画布节点,获取其的实例。使用getWebGLContext() 拿到画布上下文。拿到上下文用clearColor() 设置背景颜色。最后清空canvas画布,是为了清除颜色缓冲区。 html结构: <!DOCTYPE html> <html lang"en&…...
【力扣】Go语言回溯算法详细实现与方法论提炼
文章目录 一、引言二、回溯算法的核心概念三、组合问题1. LeetCode 77. 组合2. LeetCode 216. 组合总和III3. LeetCode 17. 电话号码的字母组合4. LeetCode 39. 组合总和5. LeetCode 40. 组合总和 II小结 四、分割问题6. LeetCode 131. 分割回文串7. LeetCode 93. 复原IP地址小…...
「C/C++」C/C++ 之 第三方库使用规范
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
六、元素应用CSS的习题
题目一: 使用CSS样式对页面元素加以修饰,制作“ 旅游攻略 ”网站。如下图所示 运行效果: 代码: <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>旅游攻略</title><…...
正式入驻!上海斯歌BPM PaaS管理软件等产品入选华为云联营商品
近日,上海斯歌旗下BPM PaaS管理软件(NBS)等多款产品入选华为云云商店联营商品,上海斯歌正式成为华为云联营商品合作伙伴。用户登录华为云云商店即可采购上海斯歌的BPM PaaS产品及配套服务。通过联营模式,双方合作能够深…...
使用 Axios 上传大文件分片上传
背景 在上传大文件时,分片上传是一种常见且有效的策略。由于大文件在上传过程中可能会遇到内存溢出、网络不稳定等问题,分片上传可以显著提高上传的可靠性和效率。通过将大文件分割成多个小分片,不仅可以减少单次上传的数据量,降…...
Nginx+Lua脚本+Redis 实现自动封禁访问频率过高IP
1 、安装OpenResty 安装使用 OpenResty,这是一个集成了各种 Lua 模块的 Nginx 服务器,是一个以Nginx为核心同时包含很多第三方模块的Web应用服务器,使用Nginx的同时又能使用lua等模块实现复杂的控制。 (1)安装编译工具…...
PART 1 数据挖掘概论 — 数据挖掘方法论
目录 数据库知识发掘步骤 数据挖掘技术的产业标准 CRISP-DM SEMMA 数据库知识发掘步骤 数据库知识发掘(Knowledge Discovery in Database,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。 知识发掘流程(Knowledge Discovery Process)包括属性选择…...
Centos安装ffmpeg的方法
推荐第一个,不要自己编译安装,太难了,坑多。 在 CentOS 上安装 FFmpeg 有几种方法,以下是两种常见的方法: ### 方法一:使用 RPM Fusion 仓库安装 1. **启用 RPM Fusion 仓库**: RPM Fusion 是一个第三方仓库,提供了许多 CentOS 官方仓库中没有的软件包。 ```bash…...
理解SQL中通配符的使用
前言 SQL 是一种标准化的结构化查询语言,涉及结构化查询时,高效地检索数据至关重要。而通配符是SQL中模式匹配的有效的方法。使用通配符可以更轻松地检索到所需的确切数据。通配符允许我们定义多功能查询条件。本文将 介绍SQL通配符的基础知识及用法。 …...
SpringBoot篇(简化操作的原理)
目录 一、代码位置 二、统一版本管理(parent) 三、提供 starter简化 Maven 配置 四、自动配置 Spring(引导类) 五、嵌入式 servlet 容器 一、代码位置 二、统一版本管理(parent) SpringBoot项目都会继…...
Cesium的模型(ModelVS)顶点着色器浅析
来自glTF和3D Tiles的模型会走ModelVS.glsl。这个文件不单独是把模型顶点转换为屏幕坐标,还包含了丰富的处理过程。 Cesium是根据定义的Define判断某个行为是否需要被执行,比如#define HAS_SILHOUETTE,说明需要计算模型外轮廓线。 Cesium的…...
机器人领域中的scaling law:通过复现斯坦福机器人UMI——探讨数据规模化定律(含UMI的复现关键)
前言 在24年10.26/10.27两天,我司七月在线举办的七月大模型机器人线下营时,我们带着大家一步步复现UMI,比如把杯子摆到杯盘上(其中1-2位学员朋友还亲自自身成功做到该任务) 此外,我还特地邀请了针对UMI做了改进工作的fastumi作者…...
C++之多态的深度剖析
目录 前言 1.多态的概念 2.多态的定义及实现 2.1多态的构成条件 2.1.1重要条件 2.1.2 虚函数 2.1.3 虚函数的重写/覆盖 2.1.4 选择题 2.1.5 虚函数其他知识 协变(了解) 析构函数的重写 override 和 final关键字 3. 重载,重写&…...
Microsoft Office PowerPoint制作科研论文用图
Microsoft Office PowerPoint制作科研论文用图 1. 获取高清图片2. 导入PPT3. 另存为“增强型windows元文件”emf格式4. 画图剪裁 1. 获取高清图片 这里指通过绘图软件画分辨率高的图片,我一般使用python画dpi600的图片。 2. 导入PPT 新建一个PPT(注意&a…...
go语言进阶之并发基础
并发 什么是并发,也就是我们常说的多线程,多个程序同时执行。 并发的基础 线程和进程 进程 进程是操作系统中一个重要的概念,指的是一个正在运行的程序的实例。它包含程序代码、当前活动的状态、变量、程序计数器和内存等资源。进程是系…...
po、dto、vo的使用场景
现在项目中有两类模型类:DTO数据传输对象、PO持久化对象,DTO用于接口层向业务层之间传输数据,PO用于业务层与持久层之间传输数据,有些项目还会设置VO对象,VO对象用在前端与接口层之间传输数据,如下图&#…...
聊一聊Elasticsearch的一些基本信息
一、Elasticsearch是什么 Elasticsearch简称ES,是一款分布式搜索引擎。它是在Apache Lucene基础之上采用Java语言开发的。 Elasticsearch的官方网站对它的解释是:Elasticsearch是一个分布式、RESTful的搜索和数据分析引擎。 通过上边的官方解释&#…...
删掉cache wordpress/万网域名查询官网
原文 对于我们CSS开发者来说经常听到一些关于LESS和SASS的信息,但是我们并不知道这都是什么意思,这篇文章就是为我们而准备的.在调查这些语言后,我已经发现它们都是一些js文件,运行后会产生相应CSS文件给我们.为什么我们要使用LESS和SASS它们呢,因为我们可以避免CSS中需要的重复…...
网站流量做那些好/seo外包顾问
Windows XP是一款经典的操作系统,同时也是一款很老的操作系统,不过尽管如此,还是有一批用户在使用XP系统,所以发行一些软件的时候还是要测试在XP系统中能否运行,这时候我们就可以借助VirtualBox虚拟机安装一个XP系统来…...
三亚网站开发/快速排名方案
Content-Type说明MediaType,即是Internet Media Type,互联网媒体类型;也叫做MIME类型, 在Http协议消息头中,使用Content-Type来表示具体请求中的媒体类型信息。 常见的媒体格式类型如下 text/html:HTML格式text/plain:纯文本格式text/xml:XM…...
wordpress 男扮女/东莞市网站seo内容优化
微信小程序实现路径导航—使用搜索组件Searchbar 腾讯地图sdk一、搜索组件Searchbar二、腾讯地图sdk三、开发准备四、敲代码五、最终效果一、搜索组件Searchbar Searchbar是微信小程序WeUI组件库中的,在【微信官方文档小程序】的【扩展能力】中有详细的介绍哦&…...
南宁做网站哪家公司好/推广的方式有哪些
弹性云服务器 ECS弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率三年低至5折,多种配置可选了解详情用户数据注…...
久久建筑网下载插件怎么下载净水器/谷歌优化是什么意思
目录dlib与opencv安装Ⅰ-提取人脸特征Ⅱ-在眼睛处绘制黑色的实心圆(伪墨镜)小结链接dlib与opencv Dlib 是一个十分优秀好用的机器学习库,其源码均由 C 实现,并提供了 Python 接口,可广泛适用于很多场景. 这里主要记录 …...