当前位置: 首页 > news >正文

岛屿数量问题

        给一个0 1矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。

 C++ 解决方案

#include <iostream>
#include <vector>using namespace std;void dfs(vector<vector<int>>& grid, int i, int j) {if (i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size() || grid[i][j] == 0) {return;}grid[i][j] = 0; // Mark the current cell as visited// Visit all four adjacent cellsdfs(grid, i - 1, j); // Updfs(grid, i + 1, j); // Downdfs(grid, i, j - 1); // Leftdfs(grid, i, j + 1); // Right
}int numIslands(vector<vector<int>>& grid) {int count = 0;for (int i = 0; i < grid.size(); ++i) {for (int j = 0; j < grid[0].size(); ++j) {if (grid[i][j] == 1) {++count;dfs(grid, i, j); // Start DFS from the current cell to mark all connected 1s as visited}}}return count;
}int main() {vector<vector<int>> grid = {{1, 1, 0, 0, 0},{1, 1, 0, 0, 1},{0, 0, 1, 0, 1},{0, 0, 0, 1, 1}};cout << "Number of islands: " << numIslands(grid) << endl;return 0;
}

Python 解决方案 

def dfs(grid, i, j):if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]) or grid[i][j] == 0:returngrid[i][j] = 0  # Mark the current cell as visited# Visit all four adjacent cellsdfs(grid, i - 1, j)  # Updfs(grid, i + 1, j)  # Downdfs(grid, i, j - 1)  # Leftdfs(grid, i, j + 1)  # Rightdef num_islands(grid):count = 0for i in range(len(grid)):for j in range(len(grid[0])):if grid[i][j] == 1:count += 1dfs(grid, i, j)  # Start DFS from the current cell to mark all connected 1s as visitedreturn count# Example usage
grid = [[1, 1, 0, 0, 0],[1, 1, 0, 0, 1],[0, 0, 1, 0, 1],[0, 0, 0, 1, 1]
]print("Number of islands:", num_islands(grid))

解释

  1. 深度优先搜索(DFS)
    • dfs函数用于遍历所有与当前陆地相连的陆地,并将它们标记为已访问(即0)。
    • 每当遇到一个未访问的陆地(即值为1的单元格),我们增加岛屿计数,并调用dfs来标记所有相连的陆地。
  2. 遍历矩阵
    • numIslands函数遍历整个矩阵,每当遇到一个新的陆地时,调用dfs函数,并增加岛屿计数。

复杂度

  • 时间复杂度:O(M * N),其中M是矩阵的行数,N是矩阵的列数,因为我们需要遍历整个矩阵一次。
  • 空间复杂度:O(M * N)(在极端情况下,递归调用栈的深度可能达到这个级别),但由于DFS的深度通常较小,实际空间占用可能会更小。

相关文章:

岛屿数量问题

给一个0 1矩阵&#xff0c;1代表是陆地&#xff0c;0代表海洋&#xff0c; 如果两个1相邻&#xff0c;那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿&#xff08;相邻:上下左右&#xff09; 判断岛屿个数。 C 解决方案 #include &…...

智能制造基础- TPM(全面生产维护)

TPM 前言一、TPM二、TPM实施步骤三、 消除主要问题3.1 实施指南3.2 如何进行“主要问题”的消除&#xff1f; 四、自主维护4.1 实施指南4.2 主要工作内容4.3 如何进行“自主维护“ 五、计划维护5.1 实施指南5.2 如何实施计划维护 六、TPM 适当的 设备 设计5.1 实施指南5.2 如何…...

C++学习笔记----11、模块、头文件及各种主题(一)---- 模板概览与类模板(4)

2.2.2、显式实例化 有危险存在于有些类模板成员函数的编译错误&#xff0c;在隐式实例化时没有注意到。未被使用的类模板成员函数也可能包含语法错误&#xff0c;因为它们不会被编译到。这会使得检测代码的语法错误很困难。可以强制编译器生成所有成员函数的代码&#xff0c;vi…...

【力扣热题100】[Java版] 刷题笔记-160. 相交链表

题目&#xff1a;160. 相交链表 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意…...

多线程和线程同步复习

多线程和线程同步复习 进程线程区别创建线程线程退出线程回收全局写法传参写法 线程分离线程同步同步方式 互斥锁互斥锁进行线程同步 死锁读写锁api细说读写锁进行线程同步 条件变量生产者消费者案例问题解答加强版生产者消费者 总结信号量信号量实现生产者消费者同步-->一个…...

贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性

「传统研究方法高度依赖于科研人员自身的特征和问题定义能力&#xff0c;通常采用小数据&#xff0c;在泛化能力和拓展能力上存疑。而 AI 研究方法则需要引入大规模、高质量数据&#xff0c;并采用机器学习进行特征抽取&#xff0c;这使得产生的科研结果在真实世界的问题中非常…...

容器化技术入门:Docker详解

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 引言 Doc…...

基于SSM(Spring + Spring MVC + MyBatis)框架的药房管理系统

基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;框架的药房管理系统 项目概述 功能需求 用户管理&#xff1a;管理员可以添加、删除、修改和查询用户信息。药品管理&#xff1a;支持对药品信息的增删改查操作&#xff0c;包括药品名称、价格、库存量等。供应商…...

在服务器里安装2个conda

1、安装新的conda 下载地址&#xff1a;Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 本文选择&#xff1a;Anaconda3-2023.03-1-Linux-x86_64.sh 安装&#xff1a;Ubuntu安装Anaconda详细步骤&#xff08;Ubuntu22.04.1&#xff…...

web安全漏洞之ssrf入门

web安全漏洞之ssrf入门 1.什么是ssrf SSRF(Server Side Request Forgery,服务端请求伪造)是一种通过构造数据进而伪造成服务端发起请求的漏洞。因为请求是由服务器内部发起&#xff0c;所以一般情况下SSRF漏洞的目标往往是无法从外网访问的内系统。 SSRF漏洞形成的原理多是服务…...

《NoSQL 基础知识总结》

在当今的数据存储和管理领域&#xff0c;NoSQL 数据库正逐渐崭露头角&#xff0c;成为许多应用场景下的有力选择。今天&#xff0c;我们就来一起深入了解一下 NoSQL 的基础知识吧。 一、什么是 NoSQL&#xff1f; NoSQL&#xff0c;即 “Not Only SQL”&#xff0c;它是一种不…...

高校宿舍信息管理系统小程序

作者主页&#xff1a;编程千纸鹤 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参…...

2.索引:MySQL 索引分类

MySQL中的索引是提高数据查询速度的重要工具&#xff0c;就像一本书的目录&#xff0c;可以帮助我们快速定位到所需的内容。选择适合的索引类型对数据库设计和性能优化至关重要。本文将详细介绍MySQL中常见的索引类型&#xff0c;并重点讲解聚集索引和二级索引的概念及应用。 1…...

sklearn红酒数据集分类器的构建和评估

实验目的&#xff1a; 1. 掌握sklearn科学数据包中决策树和神经网络分类器的构建 2. 掌握对不同分类器进行综合评估 实验数据&#xff1a; 红酒数据集 红酒数据集利用红酒的化学特征来描述三种不同类型的葡萄酒。 实验内容与要求&#xff1a; 解压文件得到wine数据。利用pa…...

【IC验证面试常问-4】

IC验证面试常问-4 1.11 struct和union的异同1.13 rose 和posedge 的区别&#xff1f;1.14 semaphore的用处是什么&#xff1f;1.15 类中的静态方法使用注意事项有哪些&#xff1f;1.16 initial和final的区别&#xff1f; s t o p , stop, stop,finish的区别1.17 logic,wire和re…...

【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!

数据集介绍 【数据集】道路事故识别数据集 8939 张&#xff0c;目标检测&#xff0c;包含YOLO/VOC格式标注。数据集中包含2种分类&#xff1a;{0: accident, 1: non-accident}。数据集来自国内外图片网站和视频截图。检测范围道路事故检测、监控视角检测、无人机视角检测、等&…...

书生浦语第四期基础岛L1G4000-InternLM + LlamaIndex RAG 实践

文章目录 一、任务要求11.首先创建虚拟环境2. 安装依赖3. 下载 Sentence Transformer 模型4.下载 NLTK 相关资源5. 是否使用 LlamaIndex 前后对比6. LlamaIndex web7. LlamaIndex本地部署InternLM实践 一、任务要求1 任务要求1&#xff08;必做&#xff0c;参考readme_api.md&…...

基于ViT的无监督工业异常检测模型汇总

基于ViT的无监督工业异常检测模型汇总 论文1&#xff1a;VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization&#xff08;2021&#xff09;1.1 主要思想1.2 系统框架 论文2&#xff1a;Inpainting Transformer for Anomaly Detection&#xf…...

数据库管理-第258期 23ai:Oracle Data Redaction(20241104)

数据库管理258期 2024-11-04 数据库管理-第258期 23ai&#xff1a;Oracle Data Redaction&#xff08;20241104&#xff09;1 简介2 应用场景与有点3 多租户环境4 特性与能力4.1 全数据编校4.2 部分编校4.3 正则表达式编校4.4 随机编校4.5 空值编校4.6 无编校4.7 不同数据类型上…...

运放进阶篇-多种波形可调信号发生器-产生方波-三角波-正弦波

引言&#xff1a;前几节我们已经说到硬件相关基础的电路&#xff0c;以及对于运放也讲到了初步的理解&#xff0c;特别是比较器的部分&#xff0c;但是放大器的部分我们对此并没有阐述&#xff0c;在这里通过实例进行理论结合实践的学习。而运放真正的核心&#xff0c;其实就是…...

CSS中的变量应用——:root,Sass变量,JavaScript中使用Sass变量

:root—— 原生CSS 自定义属性&#xff08;变量&#xff09; 在 SCSS 文件中定义 CSS 自定义属性。然后通过 JavaScript 读取这些属性。 // variables.scss :root { --login-bg-color: #293146;--left-menu-max-width: 200px;--left-menu-min-width: 64px;--left-menu-bg-…...

WPF+MVVM案例实战与特效(二十八)- 自定义WPF ComboBox样式:打造个性化下拉菜单

文章目录 1. 引言案例效果3. ComboBox 基础4. 自定义 ComboBox 样式4.1 定义 ComboBox 样式4.2 定义 ComboBoxItem 样式4.3 定义 ToggleButton 样式4.4 定义 Popup 样式5. 示例代码6. 结论1. 引言 在WPF应用程序中,ComboBox控件是一个常用的输入控件,用于从多个选项中选择一…...

速盾:怎么使用cdn加速?

CDN&#xff08;Content Delivery Network&#xff09;即内容分发网络&#xff0c;是一种通过在网络各处部署节点来缓存和传输网络内容的技术。通过使用CDN加速&#xff0c;可以提高网站的访问速度、减轻服务器负载、提供更好的用户体验。 使用CDN加速的步骤如下&#xff1a; …...

C++ 优先算法 —— 三数之和(双指针)

目录 题目&#xff1a;三数之和 1. 题目解析 2. 算法原理 ①. 暴力枚举 ②. 双指针算法 不漏的处理&#xff1a; 去重处理&#xff1a; 固定一个数 a 的优化&#xff1a; 3. 代码实现 Ⅰ. 暴力枚举&#xff08;会超时 O&#xff08;N&#xff09;&#xff09; Ⅱ.…...

YOLOv7-0.1部分代码阅读笔记-yolo.py

yolo.py models\yolo.py 目录 yolo.py 1.所需的库和模块 2.class Detect(nn.Module): 3.class IDetect(nn.Module): 4.class IAuxDetect(nn.Module): 5.class IBin(nn.Module): 6.class Model(nn.Module): 7.def parse_model(d, ch): 8.if __name__ __main__…...

【缓存与加速技术实践】Web缓存代理与CDN内容分发网络

文章目录 Web缓存代理Nginx配置缓存代理详细说明 CDN内容分发网络CDN的作用CDN的工作原理CDN内容的获取方式解决缓存集中过期的问题 Web缓存代理 作用&#xff1a; 缓存之前访问过的静态网页资源&#xff0c;以便在再次访问时能够直接从缓存代理服务器获取&#xff0c;减少源…...

MySQL的约束和三大范式

一.约束 什么是约束&#xff0c;为什么要用到约束&#xff1f; 约束就是用于创建表时&#xff0c;给对应的字段添加对应的约束 约束的作用就是当我们用insert into时&#xff0c;如果传入的数据有问题&#xff0c;不符合创建表时我们定的规定&#xff0c;这时MySQL就会自动帮…...

Unity网络通信(part7.分包和黏包)

目录 前言 概念 解决方案 具体代码 总结 分包黏包概念 分包 黏包 解决方案概述 前言 在探讨Unity网络通信的深入内容时&#xff0c;分包和黏包问题无疑是其中的关键环节。以下是对Unity网络通信中分包和黏包问题前言部分的详细解读。 概念 在网络通信中&#xff0c;…...

练习题 - DRF 3.x Overviewses 框架概述

Django REST Framework (DRF) 是一个强大的工具,用于构建 Web APIs。作为 Django 框架的扩展,DRF 提供了丰富的功能和简洁的 API,使得开发 RESTful Web 服务变得更加轻松。对于想要在 Django 环境中实现快速且灵活的 API 开发的开发者来说,DRF 是一个非常有吸引力的选择。学…...

Linux 经典面试八股文

快速鉴别十个题 1&#xff0c;你如何描述Linux文件系统的结构&#xff1f; 答案应包括对/, /etc, /var, /home, /bin, /lib, /usr, 和 /tmp等常见目录的功能和用途的描述。 2&#xff0c;在Linux中如何查看和终止正在运行的进程&#xff1f; 期望的答案应涵盖ps, top, htop, …...