当前位置: 首页 > news >正文

实习冲刺Day17

算法题

x的平方根

69. x 的平方根 - 力扣(LeetCode)

class Solution {
public:int mySqrt(int x) {long left = 0,right = x;//定义左右边界//数值取的大longlong类型while (left < right) {long mid = (right-left+1)/2+left;//定义中间节点if ((mid * mid )<= x) {//如果中间的平方小于x,那中间值左边的整体也小left = mid;} else {//如果中间值的大与x,那中间值的右边整体都大于x,right移动right = mid - 1;}}return (int)left;//返回left}
};

基础知识

如何使用函数模板和类模板? 

函数模版

函数模板可以重载,只要它们的形参表或类型参数表不同即可。

在有多个函数和函数模板名字相同的情况下,编译器如何处理,

  1. 先找参数完全匹配的普通函数(非由模板实例化而得的函数)。
  2. 再找参数完全匹配的模板函数。
  3. 再找实参数经过自动类型转换后能够匹配的普通函数。
  4. 上面的都找不到,则报错。
#include<iostream>
template <class 类型参数1,class 类型参数2, ……>
返回值类型 模板名(形参表) {函数体
};

求两数之和

#include<iostream>
using namespace std;
template<class T>
//计算两数之和
T sum(T a, T b) {T c = a + b;return c;}
int main() {int a = 10, b = 20;cout << sum(a, b) << endl;//自动转成int类型double c = 1.2, d = 2.3;cout << sum(c, d) << endl;//自动转成double类型
}

编译器自动生成函数

int sum(int a, int b) {int c = a + b;return c;}

类模版

在定义类的时候,加上一个/多个类型参数。在使用类模板时,指定类型参数应该如何替换成具体类型,编译器据此生成相应的模板类。

同一个类模板的两个模板类是不兼容的: 

编译器由类模板生成类的过程叫类模板的实例化。由类模板实例化得到的类,叫模板类。

template <class 类型参数1,class 类型参数2,……> //类型参数表
class 类模板名
{成员函数和成员变量
};

模板的优点是什么?

优点:

  1. 代码重用:减少了代码的冗余性。
  2. 类型安全:类型检查的时候更容易捕获错误
  3. 灵活性:模板提供了极高的灵活性,因为它们可以在任何支持所需操作的数据类型上使用。这包括用户定义的类型和STL(Standard Template Library)容器等内置类型。
  4. 性能:由于模板在编译时生成特定类型的代码,因此它们通常比使用虚函数或函数指针的方法更快。此外,由于类型信息在编译时是已知的,编译器可以进行优化。
  5. 抽象:模板提供了一种抽象机制,使得程序员可以专注于算法本身,而不是关注数据类型的具体实现。这有助于保持代码的清晰和简洁。

相关文章:

实习冲刺Day17

算法题 x的平方根 69. x 的平方根 - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int mySqrt(int x) {long left 0,right x;//定义左右边界//数值取的大longlong类型while (left < right) {long mid (right-left1)/2left;//定义中间节点if ((mid *…...

我自己nodejs练手时常用的一些库基础用法

我自己在使用nodejs以及前端实战练习时常用的一些库的基本使用 1.bcrypt //注册账号时&#xff0c;给密码加密 password是前端传过来的密码&#xff0c;hashPassword是存到数据库中的密码 const bcrypt require(bcrypt) const hashPassword bcrypt.hash(password,10) //登…...

岛屿数量问题

给一个0 1矩阵&#xff0c;1代表是陆地&#xff0c;0代表海洋&#xff0c; 如果两个1相邻&#xff0c;那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 岛屿问题: 相邻陆地可以组成一个岛屿&#xff08;相邻:上下左右&#xff09; 判断岛屿个数。 C 解决方案 #include &…...

智能制造基础- TPM(全面生产维护)

TPM 前言一、TPM二、TPM实施步骤三、 消除主要问题3.1 实施指南3.2 如何进行“主要问题”的消除&#xff1f; 四、自主维护4.1 实施指南4.2 主要工作内容4.3 如何进行“自主维护“ 五、计划维护5.1 实施指南5.2 如何实施计划维护 六、TPM 适当的 设备 设计5.1 实施指南5.2 如何…...

C++学习笔记----11、模块、头文件及各种主题(一)---- 模板概览与类模板(4)

2.2.2、显式实例化 有危险存在于有些类模板成员函数的编译错误&#xff0c;在隐式实例化时没有注意到。未被使用的类模板成员函数也可能包含语法错误&#xff0c;因为它们不会被编译到。这会使得检测代码的语法错误很困难。可以强制编译器生成所有成员函数的代码&#xff0c;vi…...

【力扣热题100】[Java版] 刷题笔记-160. 相交链表

题目&#xff1a;160. 相交链表 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意…...

多线程和线程同步复习

多线程和线程同步复习 进程线程区别创建线程线程退出线程回收全局写法传参写法 线程分离线程同步同步方式 互斥锁互斥锁进行线程同步 死锁读写锁api细说读写锁进行线程同步 条件变量生产者消费者案例问题解答加强版生产者消费者 总结信号量信号量实现生产者消费者同步-->一个…...

贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性

「传统研究方法高度依赖于科研人员自身的特征和问题定义能力&#xff0c;通常采用小数据&#xff0c;在泛化能力和拓展能力上存疑。而 AI 研究方法则需要引入大规模、高质量数据&#xff0c;并采用机器学习进行特征抽取&#xff0c;这使得产生的科研结果在真实世界的问题中非常…...

容器化技术入门:Docker详解

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 容器化技术入门&#xff1a;Docker详解 引言 Doc…...

基于SSM(Spring + Spring MVC + MyBatis)框架的药房管理系统

基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;框架的药房管理系统 项目概述 功能需求 用户管理&#xff1a;管理员可以添加、删除、修改和查询用户信息。药品管理&#xff1a;支持对药品信息的增删改查操作&#xff0c;包括药品名称、价格、库存量等。供应商…...

在服务器里安装2个conda

1、安装新的conda 下载地址&#xff1a;Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 本文选择&#xff1a;Anaconda3-2023.03-1-Linux-x86_64.sh 安装&#xff1a;Ubuntu安装Anaconda详细步骤&#xff08;Ubuntu22.04.1&#xff…...

web安全漏洞之ssrf入门

web安全漏洞之ssrf入门 1.什么是ssrf SSRF(Server Side Request Forgery,服务端请求伪造)是一种通过构造数据进而伪造成服务端发起请求的漏洞。因为请求是由服务器内部发起&#xff0c;所以一般情况下SSRF漏洞的目标往往是无法从外网访问的内系统。 SSRF漏洞形成的原理多是服务…...

《NoSQL 基础知识总结》

在当今的数据存储和管理领域&#xff0c;NoSQL 数据库正逐渐崭露头角&#xff0c;成为许多应用场景下的有力选择。今天&#xff0c;我们就来一起深入了解一下 NoSQL 的基础知识吧。 一、什么是 NoSQL&#xff1f; NoSQL&#xff0c;即 “Not Only SQL”&#xff0c;它是一种不…...

高校宿舍信息管理系统小程序

作者主页&#xff1a;编程千纸鹤 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参…...

2.索引:MySQL 索引分类

MySQL中的索引是提高数据查询速度的重要工具&#xff0c;就像一本书的目录&#xff0c;可以帮助我们快速定位到所需的内容。选择适合的索引类型对数据库设计和性能优化至关重要。本文将详细介绍MySQL中常见的索引类型&#xff0c;并重点讲解聚集索引和二级索引的概念及应用。 1…...

sklearn红酒数据集分类器的构建和评估

实验目的&#xff1a; 1. 掌握sklearn科学数据包中决策树和神经网络分类器的构建 2. 掌握对不同分类器进行综合评估 实验数据&#xff1a; 红酒数据集 红酒数据集利用红酒的化学特征来描述三种不同类型的葡萄酒。 实验内容与要求&#xff1a; 解压文件得到wine数据。利用pa…...

【IC验证面试常问-4】

IC验证面试常问-4 1.11 struct和union的异同1.13 rose 和posedge 的区别&#xff1f;1.14 semaphore的用处是什么&#xff1f;1.15 类中的静态方法使用注意事项有哪些&#xff1f;1.16 initial和final的区别&#xff1f; s t o p , stop, stop,finish的区别1.17 logic,wire和re…...

【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!

数据集介绍 【数据集】道路事故识别数据集 8939 张&#xff0c;目标检测&#xff0c;包含YOLO/VOC格式标注。数据集中包含2种分类&#xff1a;{0: accident, 1: non-accident}。数据集来自国内外图片网站和视频截图。检测范围道路事故检测、监控视角检测、无人机视角检测、等&…...

书生浦语第四期基础岛L1G4000-InternLM + LlamaIndex RAG 实践

文章目录 一、任务要求11.首先创建虚拟环境2. 安装依赖3. 下载 Sentence Transformer 模型4.下载 NLTK 相关资源5. 是否使用 LlamaIndex 前后对比6. LlamaIndex web7. LlamaIndex本地部署InternLM实践 一、任务要求1 任务要求1&#xff08;必做&#xff0c;参考readme_api.md&…...

基于ViT的无监督工业异常检测模型汇总

基于ViT的无监督工业异常检测模型汇总 论文1&#xff1a;VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization&#xff08;2021&#xff09;1.1 主要思想1.2 系统框架 论文2&#xff1a;Inpainting Transformer for Anomaly Detection&#xf…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

【iOS】 Block再学习

iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...