当前位置: 首页 > news >正文

川制作官方网站/网站优化一年多少钱

川制作官方网站,网站优化一年多少钱,大连网站建设信息,网站域名都需要备案吗大数据测试 Elasticsearch — 详细教程及实例 1. Elasticsearch 基础概述核心概念 2. 搭建 Elasticsearch 环境2.1 安装 Elasticsearch2.2 配置 Elasticsearch 3. 大数据测试的常见方法3.1 使用 Logstash 导入大数据3.2 使用 Elasticsearch 的 Bulk API3.3 使用 Benchmark 工具…

大数据测试 Elasticsearch — 详细教程及实例

  • 1. Elasticsearch 基础概述
    • 核心概念
  • 2. 搭建 Elasticsearch 环境
    • 2.1 安装 Elasticsearch
    • 2.2 配置 Elasticsearch
  • 3. 大数据测试的常见方法
    • 3.1 使用 Logstash 导入大数据
    • 3.2 使用 Elasticsearch 的 Bulk API
    • 3.3 使用 Benchmark 工具
  • 4. 性能调优
    • 4.1 增加分片数
    • 4.2 配置硬件资源
    • 4.3 使用 Bulk 索引
  • 5. 常见问题与解决方案
    • 5.1 索引速度慢
    • 5.2 查询性能差

Elasticsearch 是一个开源的分布式搜索和分析引擎,广泛应用于日志分析、全文检索和大数据分析等领域。本文将介绍如何进行大数据量的测试,帮助您更好地理解 Elasticsearch 的性能表现,并通过实例演示相关操作。


1. Elasticsearch 基础概述

Elasticsearch 是基于 Lucene 构建的分布式搜索引擎,通常用作数据存储、索引和搜索的引擎。它支持高效的全文检索、聚合查询和多维度分析,能够处理 PB 级别的大数据量。

核心概念

  • Index: 数据库类似的结构,包含一组文档。
  • Document: 单条记录,相当于关系型数据库中的一行。
  • Field: 文档中的字段,相当于关系型数据库中的列。
  • Shard: 索引分片,Elasticsearch 将一个索引分为多个分片进行存储和计算。
  • Replica: 副本,为了容错性,可以提高查询性能。

2. 搭建 Elasticsearch 环境

在进行大数据测试之前,首先需要搭建一个 Elasticsearch 环境。下面是一个基本的安装和配置过程。

2.1 安装 Elasticsearch

  1. 下载并解压 Elasticsearch
    访问 Elasticsearch 官方下载页面,下载适合你系统的版本,并解压。

    tar -xzf elasticsearch-7.17.0-linux-x86_64.tar.gz
    cd elasticsearch-7.17.0
    
  2. 启动 Elasticsearch

    执行以下命令启动 Elasticsearch 服务:

    ./bin/elasticsearch
    
  3. 验证启动成功

    在浏览器中访问 http://localhost:9200,如果成功启动,你应该会看到类似以下的响应:

    {"name" : "node-1","cluster_name" : "elasticsearch","cluster_uuid" : "QXt1DbR6QhuFU5fK3kpEhw","version" : {"number" : "7.17.0","build_flavor" : "default","build_type" : "tar","build_hash" : "47c6ff5","build_date" : "2021-10-05T08:21:09.741407Z","build_snapshot" : false,"lucene_version" : "8.9.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0"},"tagline" : "You Know, for Search"
    }
    

2.2 配置 Elasticsearch

配置文件位于 config/elasticsearch.yml,你可以根据需要修改如下参数:

  • cluster.name: 设置集群名称
  • node.name: 设置节点名称
  • network.host: 设置网络绑定地址
  • discovery.seed_hosts: 设置集群发现的其他节点

3. 大数据测试的常见方法

大数据测试通常涉及对 Elasticsearch 集群的负载、吞吐量、延迟、资源消耗等方面进行压力测试。以下是几种常见的方法:

3.1 使用 Logstash 导入大数据

Logstash 是 Elastic Stack 的一部分,适用于从各种来源(如数据库、文件、消息队列等)导入数据。你可以使用 Logstash 导入大量数据,进行大数据测试。

  1. 安装 Logstash

    从官网 Logstash 下载页面 下载并安装。

  2. 配置 Logstash 数据导入

    创建一个简单的 Logstash 配置文件 logstash.conf

    input {file {path => "/path/to/your/big_data_file.csv"start_position => "beginning"}
    }filter {csv {separator => ","columns => ["id", "name", "timestamp", "value"]}
    }output {elasticsearch {hosts => ["http://localhost:9200"]index => "big_data_index"}
    }
    
  3. 运行 Logstash

    执行以下命令启动 Logstash:

    bin/logstash -f logstash.conf
    

通过这种方式,你可以轻松地将大量数据导入到 Elasticsearch 中,进行性能和查询测试。

3.2 使用 Elasticsearch 的 Bulk API

Elasticsearch 提供了 Bulk API 来进行批量插入操作,这对于大数据测试非常有用。以下是如何使用 Bulk API 导入数据:

  1. 构造 Bulk 请求

    Bulk API 请求由一系列操作组成,每个操作都是一个 JSON 格式的请求。下面是一个例子:

    { "index": { "_index": "big_data_index", "_id": 1 } }
    { "name": "Alice", "age": 30, "city": "New York" }
    { "index": { "_index": "big_data_index", "_id": 2 } }
    { "name": "Bob", "age": 25, "city": "San Francisco" }
    
  2. 执行 Bulk 请求

    使用 curl 或者通过客户端进行请求:

    curl -X POST "localhost:9200/_bulk" -H 'Content-Type: application/json' -d @bulk_data.json
    

    其中 bulk_data.json 是上面构造的 JSON 请求文件。

3.3 使用 Benchmark 工具

Elasticsearch 自带一个性能测试工具叫做 Rally。通过 Rally 可以模拟各种负载进行性能测试。

  1. 安装 Rally

    在 Elasticsearch 安装目录下运行以下命令安装 Rally:

    bin/elasticsearch-plugin install org.elasticsearch.plugin:rally
    
  2. 运行 Rally 测试

    运行以下命令来启动一个简单的基准测试:

    bin/elasticsearch-rally --track=geonames
    

    这将会模拟一组针对地理数据的查询和索引操作,来测试 Elasticsearch 的性能。


4. 性能调优

在进行大数据量测试时,你可能需要根据测试结果调整 Elasticsearch 的配置,以提高性能。以下是一些常见的优化方法:

4.1 增加分片数

默认情况下,Elasticsearch 为每个索引创建 5 个主分片(shards)。对于大数据量的索引,适当增加分片数可以提高索引和查询性能。

index:number_of_shards: 10  # 增加分片数量

4.2 配置硬件资源

  • 内存:Elasticsearch 通常需要大量内存,可以通过调整 jvm.options 文件中的堆内存大小来配置 JVM 的内存分配。
  • 磁盘:确保使用 SSD 来提高磁盘 I/O 性能,尤其是在处理大数据时。
  • 网络:Elasticsearch 是分布式的,节点之间的网络带宽非常重要。如果使用多节点集群,确保节点之间的网络速度足够快。

4.3 使用 Bulk 索引

Bulk 操作比单个文档的逐一插入更高效。尽量使用 Bulk API 或者 Logstash 批量导入数据。


5. 常见问题与解决方案

5.1 索引速度慢

如果你在导入大量数据时遇到索引速度慢,可以尝试以下方法:

  • 关闭副本:临时关闭副本可以提高索引速度,待数据导入后再开启副本。

    curl -X PUT "localhost:9200/index_name/_settings" -H 'Content-Type: application/json' -d '{"index": {"number_of_replicas": 0}
    }'
    

5.2 查询性能差

对于查询性能差的问题,你可以:

  • 优化查询:避免使用不必要的复杂查询,简化查询逻辑。
  • 调整映射:根据数据的使用模式调整字段类型和索引策略。

推荐阅读:《大数据 ETL + Flume 数据清洗 — 详细教程及实例》

相关文章:

【大数据测试 Elasticsearch — 详细教程及实例】

大数据测试 Elasticsearch — 详细教程及实例 1. Elasticsearch 基础概述核心概念 2. 搭建 Elasticsearch 环境2.1 安装 Elasticsearch2.2 配置 Elasticsearch 3. 大数据测试的常见方法3.1 使用 Logstash 导入大数据3.2 使用 Elasticsearch 的 Bulk API3.3 使用 Benchmark 工具…...

用ArkTS写一个登录页面(实现简单的逻辑)

登录页面 1.登录页面编码 Extend(TextInput) function customStyle(){.backgroundColor(#fff).border({width:{bottom:0.5},color:#e4e4e4}).borderRadius(1) //让圆角不明显.placeholderColor(#c3c3c5).caretColor(#fa711d) //input获取焦点样式 }Entry Component struct Log…...

matlab将INCA采集的dat文件多个变量批量读取到excel中

参考资料: MATLAB处理INCA采集数据(mdf,dat等)一 使用matlab处理INCF采集数据,mdf(.dat)格式文件,并将将其写入excel文件 这个资料只能一个变量一个变量的提取,本对其进…...

list集合常见去重方式以及效率对比

1.概述 list集合去重是开发中比较常用的操作,在面试中也会经常问到,那么list去重都有哪些方式?他们之间又该如何选择呢? 本文将通过LinkedHashSet、for循环、list流toSet、list流distinct等4种方式分别做1W数据到1000W数据单元测试…...

JavaWeb——Web入门(7/9)-Tomcat-介绍(Tomcat 的简介:轻量级Web服务器,支持Servlet/JSP少量JavaEE规范)

目录 Web服务器的作用 三个方面的讲解 Tomcat 的简介 小结 Web服务器的作用 封装 HTTP 协议操作:Web服务器是一个软件程序,对 HTTP 协议的操作进行了封装。这样开发人员就不需要再直接去操作 HTTP 协议,使得外部应用程序的开发更加便捷、…...

【SpringBoot】19 文件/图片下载(MySQL + Thymeleaf)

Git仓库 https://gitee.com/Lin_DH/system 介绍 从 MySQL 中,下载保存的 blob 格式的文件。 代码实现 第一步:配置文件 application.yml spring:jackson:date-format: yyyy-MM-dd HH:mm:sstime-zone: GMT8datasource:driver-class-name: com.mysql.…...

陪诊问诊APP开发实战:基于互联网医院系统源码的搭建详解

时下,开发一款功能全面、用户体验良好的陪诊问诊APP成为了医疗行业的一大热点。本文将结合互联网医院系统源码,详细解析陪诊问诊APP的开发过程,为开发者提供实用的开发方案与技术指导。 一、陪诊问诊APP的背景与功能需求 陪诊问诊APP核心目…...

Spark 中 RDD 的诞生:原理、操作与分区规则

Spark 的介绍与搭建:从理论到实践-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 Spark 程序开发与提交:本地与集群模式全解析-CSDN博客 Spark on YARN:Spark集群模式之Yarn模式的原…...

c++构造与析构

构造函数特性 名称与类名相同:构造函数的名称必须与类名完全相同,并且不能有返回值类型(包括void)。 自动调用:构造函数在对象实例化时自动调用,不需要手动调用。 初始化成员变量:构造函数的主…...

C++(函数重载,引用,nullptr)

1.函数重载 C⽀持在同⼀作⽤域中出现同名函数,但是要求这些同名函数的形参不同,可以是参数个数不同或者类型不同。传参时会自动匹配传入的参数,对应该函数的形参类型,进行函数调用,这样C函数调⽤就表现出了多态⾏为&a…...

django+postgresql

PostgreSQL概述 PostgreSQL 是一个功能强大的开源关系数据库管理系统(RDBMS),以其高度的稳定性、扩展性和社区支持而闻名。PostgreSQL 支持 SQL 标准并具有很多先进特性,如 ACID 合规、复杂查询、外键支持、事务处理、表分区、JS…...

前端滚动锚点(点击后页面滚动到指定位置)

三个常用方案:1.scrollintoView 把调用该方法的元素滚动到屏幕的指定位置,中间,底部,或者顶部 优点:方便,只需要获取元素然后调用 缺点:不好精确控制,只能让元素指定滚动到中间&…...

使用SSL加密465端口发送邮件

基于安全考虑,云虚拟主机的25端口默认封闭,如果您有发送邮件的需求,建议使用SSL加密端口(465端口)来对外发送邮件。本文通过提供.NET、PHP和ASP样例来介绍使用SSL加密端口发送邮件的方法,其他语言的实现思路…...

一些面试题总结(一)

1、string为什么是不可变的,有什么好处 原因: 1、因为String类下的value数组是用final修饰的,final保证了value一旦被初始化,就不可改变其引用。 2、此外,value数组的访问权限为 private,同时没有提供方…...

泄露的文档显示 Google 似乎意识到了 Tensor 处理器存在过热问题

Google 知道其 Tensor 芯片存在一些问题,尤其是在过热和电池寿命方面,显然他们正在努力通过即将推出的代号为"Malibu"的 Tensor G6 来解决这一问题。 Android Authority 泄露的幻灯片显示,过热是基于 Tensor 的 Pixel 手机退换货的…...

python爬虫案例——网页源码被加密,解密方法全过程

文章目录 1、任务目标2、网页分析3、代码编写1、任务目标 目标网站:https://jzsc.mohurd.gov.cn/data/company,该网站的网页源码被加密了,用于本文测验 要求:解密该网站的网页源码,请求网站并返回解密后的明文数据,网页内容如下: 2、网页分析 进入网站,打开开发者模式,…...

2.4_SSRF服务端请求伪造

SSRF服务端请求伪造 定义:服务端请求伪造。是一种攻击者构造请求后,交由服务端发起请求的漏洞; 产生原理:该服务器提供了从其他服务器获取数据的功能,但没有对用户提交的数据做严格校验; 利用条件&#…...

数据分析反馈:提升决策质量的关键指南

内容概要 在当今快节奏的商业环境中,数据分析与反馈已成为提升决策质量的重要工具。数据分析不仅能为企业提供全面的市场洞察,还能帮助管理层深入了解客户需求与行为模式。掌握数据收集的有效策略和工具,企业能够确保获得准确且相关的信息&a…...

一步步安装deeponet的详细教学

1.deepoent官网如下&#xff1a; https://github.com/lululxvi/deeponet 需要下载依赖 1.python3 2.DeepXDE&#xff08;这里安装DeepXDE<0.11.2,这个最方便&#xff09; Optional: For CNN, install Matlab and TensorFlow 1; for Seq2Seq, install PyTorch&#xff0…...

Devops业务价值流:版本发布最佳实践

敏捷开发中&#xff0c;版本由多个迭代构建而成&#xff0c;每个迭代都是产品进步的一环。当版本最后一个迭代完成时&#xff0c;便启动了至关重要的上线流程。版本发布流程与规划流程相辅相成&#xff0c;确保每个迭代在版本中有效循环执行&#xff0c;最终达成产品目标。 本…...

背包问题(三)

文章目录 一、二维费用的背包问题二、潜水员三、机器分配四、开心的金明五、有依赖的背包问题 一、二维费用的背包问题 题目链接 #include<iostream> #include<algorithm> using namespace std; const int M 110; int n,m,kg; int f[M][M];int main() {cin >…...

linux之调度管理(2)-调度器 如何触发运行

一、调度器是如何在程序稳定运行的情况下进行进程调度的 1.1 系统定时器 因为我们主要讲解的是调度器&#xff0c;而会涉及到一些系统定时器的知识&#xff0c;这里我们简单讲解一下内核中定时器是如何组织&#xff0c;又是如何通过通过定时器实现了调度器的间隔调度。首先我们…...

深入理解 Vue 3 中的 Props

深入理解 Vue 3 中的 Props Vue 3 引入了 Composition API 等新特性&#xff0c;组件的定义和使用也变得更为灵活。而在组件通信中&#xff0c;Props&#xff08;属性&#xff09;扮演了重要角色&#xff0c;帮助父组件向子组件传递数据&#xff0c;形成单向的数据流动&#x…...

校园周边美食探索及分享平台

摘要&#xff1a; 美食一直是与人们日常生活息息相关的产业。传统的电话订餐或者到店消费已经不能适应市场发展的需求。随着网络的迅速崛起&#xff0c;互联网日益成为提供信息的最佳俱渠道和逐步走向传统的流通领域&#xff0c;传统的美食业进而也面临着巨大的挑战&#xff0…...

内网对抗-信息收集篇SPN扫描DC定位角色区域定性服务探针安全防护凭据获取

知识点&#xff1a; 1、信息收集篇-网络架构-出网&角色&服务&成员 2、信息收集篇-安全防护-杀毒&防火墙&流量监控 3、信息收集篇-密码凭据-系统&工具&网站&网络域渗透的信息收集&#xff1a; 在攻防演练中&#xff0c;当完成边界突破后进入内…...

石墨舟氮气柜:半导体制造中的关键保护设备

石墨舟是由高纯度石墨材料制成的&#xff0c;主要用于承载硅片或其他基板材料通过高温处理过程&#xff0c;是制造半导体器件和太阳能电池片的关键设备之一。 石墨舟在空气中容易与氧气发生反应&#xff0c;尤其是在高温处理后&#xff0c;表面可能更为敏感&#xff1b;石墨舟具…...

性能调优专题(7)之Innodb底层原理与Mysql日志机制深入剖析

一、MYSQL的内部组件结构 大体来说,Mysql可以分为Server层和存储引擎层两部分。 1.1 Server层 Server层主要包括连接器、查询缓存、词法分析器、优化器等。涵盖MYSQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功…...

量子计算及其在密码学中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 量子计算及其在密码学中的应用 量子计算及其在密码学中的应用 量子计算及其在密码学中的应用 引言 量子计算概述 定义与原理 发展…...

LSM树 (Log-Structured Merge Tree)、Cuckoo Hashing详细解读

一、LSM 树 (Log-Structured Merge Tree) LSM 树&#xff08;Log-Structured Merge Tree&#xff09; 是一种专为 高效写入和批量更新 设计的数据结构&#xff0c;特别适合于 高写入密度 的应用场景&#xff0c;如数据库和文件系统。它广泛用于 NoSQL 数据库&#xff08;如 Ca…...

VMware中的重要日志文件 vobd.log 学习总结

最近几天处理完毕存储的故障后&#xff0c;接着就是host方面的问题&#xff0c;Vmware无法访问到存储&#xff0c;其实存储的LUN和POOL 已经online ready了&#xff0c;但是主机还是访问不到存储。 这里介绍下Vmware中的一个重要的日志文件 vobd.log&#xff0c;该文件对于分析…...