当前位置: 首页 > news >正文

RabbitMQ 不公平分发介绍

        RabbitMQ 是一个流行的开源消息代理软件,它实现了高级消息队列协议(AMQP)。在 RabbitMQ 中,消息分发策略对于系统的性能和负载均衡至关重要。默认情况下,RabbitMQ 使用公平分发(Fair Dispatch)策略,以确保所有消费者都能平等地处理消息。然而,在某些情况下,我们可能希望使用不公平分发(Unfair Dispatch)策略,以允许某些消费者处理更多的消息,从而实现特定的性能优化或负载均衡需求。

公平分发 vs 不公平分发
  • 公平分发:RabbitMQ 会确保每个消费者按照其处理速度来公平地接收消息。如果一个消费者正在处理消息,那么它不会接收到新的消息,直到它完成当前消息的处理。这种策略有助于避免某些消费者过载,而其他消费者空闲的情况。

  • 不公平分发:在这种模式下,RabbitMQ 不会对消费者进行限制,允许一个消费者在处理消息的同时继续接收新的消息。这可能会导致某些消费者处理更多的消息,而其他消费者处理较少的消息。不公平分发在某些场景下可以提高吞吐量,但也可能导致负载不均衡。

使用不公平分发的场景
  • 性能优化:当某些消费者处理消息的速度远快于其他消费者时,不公平分发可以允许这些消费者处理更多的消息,从而提高整体吞吐量。
  • 特定负载需求:在某些应用场景中,可能希望某些消费者处理更多的任务,以实现特定的业务逻辑或性能目标。

Java 代码示例

        下面是一个使用 Spring AMQP 和 RabbitMQ 的 Java 示例,展示了如何配置和使用不公平分发策略。

依赖配置

        首先,在你的 pom.xml 文件中添加 Spring AMQP 和 RabbitMQ 的依赖:

<dependencies>  <dependency>  <groupId>org.springframework.boot</groupId>  <artifactId>spring-boot-starter-amqp</artifactId>  </dependency>  <dependency>  <groupId>com.rabbitmq</groupId>  <artifactId>amqp-client</artifactId>  </dependency>  
</dependencies>
配置 RabbitMQ 和不公平分发

        创建一个配置类来配置 RabbitMQ 连接工厂和消息监听器容器:

import org.springframework.amqp.core.Queue;  
import org.springframework.amqp.rabbit.connection.CachingConnectionFactory;  
import org.springframework.amqp.rabbit.connection.ConnectionFactory;  
import org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer;  
import org.springframework.amqp.rabbit.listener.adapter.MessageListenerAdapter;  
import org.springframework.context.annotation.Bean;  
import org.springframework.context.annotation.Configuration;  @Configuration  
public class RabbitMQConfig {  public static final String QUEUE_NAME = "unfair_queue";  @Bean  public Queue queue() {  return new Queue(QUEUE_NAME, true);  }  @Bean  public ConnectionFactory connectionFactory() {  CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");  return connectionFactory;  }  @Bean  public SimpleMessageListenerContainer messageListenerContainer(ConnectionFactory connectionFactory,  MessageListenerAdapter listenerAdapter) {  SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();  container.setConnectionFactory(connectionFactory);  container.setQueueNames(QUEUE_NAME);  container.setMessageListener(listenerAdapter);  container.setPrefetchCount(1); // 设置为1以确保消息是逐个分发的  container.setBasicQosParameters(1, false); // 第二个参数false表示不公平分发  return container;  }  @Bean  public MessageListenerAdapter listenerAdapter(Receiver receiver) {  return new MessageListenerAdapter(receiver, "receiveMessage");  }  
}
消息接收者

        创建一个消息接收者类来处理消息:

import org.springframework.stereotype.Component;  @Component  
public class Receiver {  public void receiveMessage(String message) {  System.out.println("Received <" + message + ">");  try {  // 模拟消息处理时间  Thread.sleep((int) (Math.random() * 1000));  } catch (InterruptedException e) {  Thread.currentThread().interrupt();  }  }  
}
发送消息

        创建一个简单的控制器来发送消息到队列中:

import org.springframework.amqp.rabbit.core.RabbitTemplate;  
import org.springframework.beans.factory.annotation.Autowired;  
import org.springframework.web.bind.annotation.GetMapping;  
import org.springframework.web.bind.annotation.RequestParam;  
import org.springframework.web.bind.annotation.RestController;  @RestController  
public class MessageController {  @Autowired  private RabbitTemplate rabbitTemplate;  @GetMapping("/send")  public String sendMessage(@RequestParam String message) {  rabbitTemplate.convertAndSend(RabbitMQConfig.QUEUE_NAME, message);  return "Message sent: " + message;  }  
}

总结

        通过上述配置和代码示例,我们展示了如何在 Spring AMQP 和 RabbitMQ 中配置和使用不公平分发策略。不公平分发在某些特定场景下可以提高系统的性能,但也需要谨慎使用,以避免负载不均衡和某些消费者过载的问题。


新时代农民工

相关文章:

RabbitMQ 不公平分发介绍

RabbitMQ 是一个流行的开源消息代理软件&#xff0c;它实现了高级消息队列协议&#xff08;AMQP&#xff09;。在 RabbitMQ 中&#xff0c;消息分发策略对于系统的性能和负载均衡至关重要。默认情况下&#xff0c;RabbitMQ 使用公平分发&#xff08;Fair Dispatch&#xff09;策…...

测试实项中的偶必现难测bug--一键登录失败

问题描述:安卓和ios有出现部分一键登录失败的场景,由于场景比较极端,衍生了很多不好评估的情况。 产生原因分析: 目前有解决过多次这种行为的问题,每次的产生原因都有所不同,这边根据我个人测试和收集复现的情况列举一些我碰到的: 1、由于我们调用的是友盟的一键登录的…...

危!这些高危端口再不知道问题就大了

号主&#xff1a;老杨丨11年资深网络工程师&#xff0c;更多网工提升干货&#xff0c;请关注公众号&#xff1a;网络工程师俱乐部 下午好&#xff0c;我的网工朋友。 端口作为网络通信的基本单元&#xff0c;用于标识网络服务和应用程序。 但某些端口由于其开放性和易受攻击的…...

Redis集群模式之Redis Sentinel vs. Redis Cluster

在分布式系统环境中&#xff0c;Redis以其高性能、低延迟和丰富的数据结构而广受青睐。随着数据量的增长和访问需求的增加&#xff0c;单一Redis实例往往难以满足高可用性和扩展性的要求。为此&#xff0c;Redis提供了两种主要的集群模式&#xff1a;Redis Sentinel和Redis Clu…...

Leetcode 罗马数字转整数

代码的算法思想可以分为以下几步&#xff1a; 建立映射表&#xff1a; 首先&#xff0c;代码使用 HashMap 来存储罗马数字字符与其对应的整数值关系。例如&#xff0c;I 对应 1&#xff0c;V 对应 5&#xff0c;以此类推。这是为了方便后续快速查找每个罗马字符对应的整数值。 …...

东方通TongWeb替换Tomcat的踩坑记录

一、背景 由于信创需要&#xff0c;原来项目的用到的一些中间件、软件都要逐步替换为国产品牌&#xff0c;决定先从web容器入手&#xff0c;将Tomcat替换掉。在网上搜了一些资料&#xff0c;结合项目当前情况&#xff0c;考虑在金蝶AAS和东方通TongWeb里面选择&#xff0c;后又…...

ceph介绍和搭建

1 为什么要使用ceph存储 什么是对象存储&#xff1f; 对象存储并没有向文件系统那样划分为元数据区域和数据区域&#xff0c;而是按照不同的对象进行存储&#xff0c;而且每个对象内部维护着元数据和数据区域。因此每个对象都有自己独立的管理格式。 对象存储优点&#xff1a…...

树莓派安装FreeSWITCH

1、下载相关资源&#xff1a; # 假设所有资源都下载到/opt/目录下 cd /opt # 下载FreeSWITCH源码 git clone https://github.com/signalwire/freeswitch # 下载libks源码 git clone https://github.com/signalwire/libks # 下载sofia-sip源码 git clone https://github.com/fr…...

OpenSSL 生成根证书、中间证书和网站证书

OpenSSL 生成根证书、中间证书和网站证书 一、生成根证书&#xff08;ChinaRootCA&#xff09;二、生成中间 CA&#xff08;GuangDongCA&#xff09;三、生成网站证书&#xff08;gdzwfw&#xff09; 一、生成根证书&#xff08;ChinaRootCA&#xff09; 创建私钥&#xff1a; …...

MySQL核心业务大表归档过程

记录一下2年前的MySQL大表的归档&#xff0c;当时刚到公司&#xff0c;发现MySQL的业务核心库&#xff0c;超过亿条的有7张表&#xff0c;最大的表有9亿多条&#xff0c;有37张表超过5百万条&#xff0c;部分表行数如下&#xff1a; 在测试的MySQL环境 &#xff1a; pt-archiv…...

dapp获取钱包地址,及签名

npm install ethersimport {ethers} from ethers const accounts await ethereum.request({method: eth_requestAccounts}); // 获取钱包地址 this.form.address accounts[0] console.log("accounts:" this.address)const provider new ethers.BrowserProvider(…...

探索Dijkstra算法的普遍最优性:从经典算法到最新学术突破

引言 在计算机科学中&#xff0c;Dijkstra算法是解决单源最短路径问题的经典算法&#xff0c;尤其在地图导航、网络通信和机器人路径规划等领域有着广泛应用。近期&#xff0c;学术界在此算法上取得了重大突破&#xff1a;研究人员证明了Dijkstra算法的“普遍最优性”&#xff…...

‍️代码的华尔兹:在 Makefile 的指尖上舞动自动化的诗篇

文章目录 &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️背景——一个优秀工程师必备技能&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️一、&#x1f929;&#x1f929;快速了解…...

函数式编程Stream流(通俗易懂!!!)

目录 1.Lambda表达式 1.1 基本用法 1.2 省略规则 2.Stream流 2.1 常规操作 2.1.1 创建流 2.1.2 中间操作 filter map distinct sorted limit ​编辑skip flatMap 2.1.3 终结操作 foreach count max&min collect anyMatch allMatch noneMatch …...

数据分析:转录组差异fgsea富集分析

文章目录 介绍加载R包数据链接导入数据数据预处理DE testing: 2BP vs no-BP比较limma-voomLoad steroid dataIn No-BP patientsIn 2BP patientsCompare gene expression vs bacterial mass其他系统信息介绍 转录组差异fgsea富集分析是一种基于基因集的富集分析方法,它关注的是…...

在Django中安装、配置、使用CKEditor5,并将CKEditor5录入的文章展现出来,实现一个简单博客网站的功能

在Django中可以使用CKEditor4和CKEditor5两个版本&#xff0c;分别对应软件包django-ckeditor和django-ckeditor-5。原来使用的是CKEditor4&#xff0c;python manager.py makemigrations时总是提示CKEditor4有安全风险&#xff0c;建议升级到CKEditor5。故卸载了CKEditor4&…...

AI笔筒操作说明及应用场景

AI笔筒由来&#xff1a; 在快节奏的现代办公环境中&#xff0c;我们一直在寻找既能提升效率、增添便利&#xff0c;又能融入企业文化、展现个人品味的桌面伙伴。为此&#xff0c;我们特推出专为追求卓越、注重细节的您设计的AI笔筒礼品版&#xff0c;它集高科技与实用性于一身…...

Android自启动管控

1. 自启动管控需求来源 自启动、关联启动、交叉启动、推送启动等现象的泛滥除了对个人信息保护带来隐患外&#xff0c;还会导致占用过多的系统CPU和内存资源&#xff0c;造成系统卡顿、发热、电池消耗过快&#xff1b;还可能引入一些包含“恶意代码”的进程在后台隐蔽启动&…...

把握鸿蒙生态崛起的机遇:开发者视角的探讨

​ 大家好&#xff0c;我是程序员小羊&#xff01; 前言&#xff1a; 近年来&#xff0c;鸿蒙系统&#xff08;HarmonyOS&#xff09;的发展备受瞩目。随着其在智能手机、智能穿戴、车载系统和智能家居等领域的广泛应用&#xff0c;鸿蒙系统正逐渐形成与安卓、iOS并列的三足鼎立…...

MySQL初学之旅(1)配置与基础操作

目录 1.前言 2.正文 2.1数据库的发展历程 2.2数据库的基础操作 2.2.1启动服务 2.2.2创建与删除数据库 2.2.3数据类型 2.2.4创建表与删除表 2.3MySQL Workbench基础使用简介 3.小结 1.前言 哈喽大家好吖&#xff0c;今天博主正式开始为大家分享数据库的学习&#xff…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...