当前位置: 首页 > news >正文

AI大模型(一):Prompt AI编程

一、Prompt Engineering,提示工程

提示工程也叫指令工程:

  • Prompt是发给大模型的指令,比如【讲个睡前故事】、【用Python写个消消乐游戏】等;
  • 本质上大模型相关的工程工作,都是围绕prompt展开的;
  • 提示工程门槛低,天花板高,所以又有人戏称Prompt为咒语;
  • Prompt相当于是AGI时代的编程语言;
  • 高质量prompt核心:具体、丰富、少歧义;
  • Prompt是个逐步调优的过程,并不是一下子就好。

OpenAI官方提供的Prompt Engineering教程:

https://platform.openai.com/docs/guides/prompt-engineering

Prompt的典型构成

不要固守模板,模板的价值是提醒我们别漏掉什么,而不是必须遵守模板。

1. 角色:
  • 给AI定义一个最匹配任务的角色;
  • 比如:【你是一个软件产品经理】【你是一位小学语文老师】;
  • 先定义角色,就是在开头把问题域收窄,较少二义性;
2. 指令:
  • 对任务进行描述;
3. 上下文:
  • 给出与任务相关的其它背景信息;
4. 例子:
  • 必要时给出举例,学术中称为one-shot learning, few-shot learning或in-context learning;
5. 输入:
  • 任务的输入信息;再提示词中明确的标识出输入;
6. 输出:
  • 输出的格式描述,以便后续模块自动解析模型的输出结果,比如JSON、XML;

案例:推荐流量包的智能客服

需求:智能客服根据用户的咨询,推荐最合适的流量包。

 大模型应用于软件系统的核心思路:
  1. 把输入的自然语言对话,转成结构化的信息(自然语言理解NLU);
  2. 用传统软件的手段去处理结构化信息,得到处理策略;
  3. 把策略转成自然语言输出(NLG);
对话流程举例:

用Prompt实现
定义任务描述和输入:
"""
1. 任务描述                  
"""instruction = """你的任务是识别用户对手机流量套餐产品的选择条件。每种流量套餐产品包含三个属性:名称、月费价格和月流量。根据用户输入,识别用户在上述三种属性上的需求是什么""""""
2. 用户输入                 
"""input_text = """办理100G的套餐"""# prompt模板,instruction和input_text会被替换为上面的内容
prompt = f"""
{instruction}用户输入:{input_text}
""""""
3. 调用大模型                 
"""
response = get_completion(prompt)
print(response)
约定输出格式:
"""
1. 输出格式                  
"""output_format = """以 JSON 格式输出""""""
2. 稍微调整咒语,加入输出格式                 
"""
prompt = f"""
{instruction}{output_format}用户输入:
{input_text}
""""""
3. 调用大模型                 
"""
response = get_completion(prompt, response_format="json_object")
print(response)

二、用AI帮我写代码

认知AI最好的方式就是天天用。

问自己几个问题:

1. 我的时间都消耗在哪里?

  • 工作、学习、娱乐、锻炼
  • 工作&学习:学习新技术新知识,一方面了解发展水平和趋势,以及各个工具如何使用;另一方面结合以往和现在的工作场景、工作中的痛点,思考有哪些可以优化改进的地方。
  • 娱乐:找各种好看的下饭剧
  • 锻炼:根据个人喜好和身体反馈,不定期的调整运动项目和动作

2. 怎么让AI帮我省时间?

  • 重复脑力劳动都可以考虑AI化;
  • 【输入和输出都是文本】的场景,都值得尝试用大模型提效;

3. 如何找到落地场景?

  • 从最熟悉的领域入手
  • 尽量找能用语言描述清楚的任务
  • 别求大而全。将任务拆解,先解决小任务、小场景
  • 让AI学最厉害员工的能力,再让ta辅助其他员工,实现降本增效

AI Embedded模式 ———》Copilot模式——》Agent模式

Agent模式目前有点超前,Copilot是当前主流

实现Copilot的主流架构是多Agent架构,模仿人做事,将业务拆成工作流(workflow 、SOP、pipeline),每个Agent负责一个工作流节点。

【编程】是目前大模型能力最强的垂直领域,甚至超越了对【自然语言】本身的处理能力。因为训练数据质量高、结果可衡量、编程语言无二义性,且有论文证明编程训练能增强模型的推理能力,所以会特别训练这块。

知道怎么用好AI编程,了解它的能力边界、使用场景,就能类比出其他领域的AI怎么落地,能力上限在哪。

How to build an enterprise LLM application: Lessons from GitHub Copilot - The GitHub Blog

产品设计经验:在chat界面里用 @ 串联多个agent是一个常见的AI产品设计范式。

一些其他的使用方式:10 unexpected ways to use GitHub Copilot - The GitHub Blog

让AI在不影响用户原有工作习惯的情况下切入使用场景,接受度更高。例如,Copilot最开始使用的是问答,然后取消问答使用补全,最后恢复问答。

先以架构师的身份,让AI辅助你对架构进行选型;通过需求文档和业务文档,让AI给出架构的建议;然后以开发者的身份,让AI辅助你写业务代码(逐层拆分向下写)。

落地经验:新工具的引入,可能会有一些负面的因素要考虑,需要有足够的信心和耐心去应对。核心是调整好利益链

总结

不管是个人还是企业,都能借用AI提效。

  • 通过天天使用,总结使用大模型的规律,【输入和输出都是文本】的场景,都值得尝试用大模型提效。
  • 通过体验GitHub Copilot,认识到,AI产品的打磨过程、落地和如何打造盈利产品。
  • 基于落地的成功案例,理解基本原理,避免拍脑袋。

相关文章:

AI大模型(一):Prompt AI编程

一、Prompt Engineering,提示工程 提示工程也叫指令工程: Prompt是发给大模型的指令,比如【讲个睡前故事】、【用Python写个消消乐游戏】等;本质上大模型相关的工程工作,都是围绕prompt展开的;提示工程门…...

ArcGIS Pro属性表乱码与字段名3个汉字解决方案大总结

01 背景 我们之前在使用ArcGIS出现导出Excel中文乱码及shp添加字段3个字被截断的情况,我们有以下应对策略: 推荐阅读:ArcGIS导出Excel中文乱码及shp添加字段3个字被截断? 那如果我们使用ArGIS Pro出现上述问题,该如何…...

小程序-基于java+SpringBoot+Vue的驾校预约平台设计与实现

项目运行 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.硬件环境&#xff1a…...

计算机网络网关简介

网关,在计算机网络中扮演着至关重要的角色,它如同不同语言间的翻译官,让不同网络协议、不同体系结构的网络能够相互通信。简而言之,网关就是一个网络连接到另一个网络的“关口”,负责数据的接收、转换与发送。 在局域…...

如何用python将pdf转换为json格式

使用 Python 将 PDF 文件转换为 JSON 格式,主要步骤如下: 读取 PDF 内容:首先使用一个库读取 PDF 文件内容,如 PyMuPDF 或 pdfplumber。这些库可以逐页提取文本,并返回结构化的数据。 组织数据到 JSON:将提…...

STL关联式容器介绍

在前文中介绍了STL的序列式容器; STL序列式容器之vector-CSDN博客 STL序列式容器之list-CSDN博客 STL序列式容器之deque-CSDN博客 STL序列式容器之stack-CSDN博客 STL序列式容器之queue-CSDN博客 STL序列式容器之heap(堆)-CSDN博客 ST…...

java计算机毕业设计选题参考3000篇

基于微信小程序的springboot高校餐厅食品留样管理系统 springboot vue大学生创新创业训练项目管理系统 Springboot的疫情网课管理系统 基于微信小程序的计算机实验室排课与查询系统ssm后端 基于ssm后端的学生购电电费管理微信小程序weixin356 ssm机场网上订票系统 基于ssmvue的…...

JWT介绍、测试案例 以及实际开发中的使用

什么是JWT? JWT,通过数字签名的方式,以json对象为载体,在不同的服务终端之间安全的传输信息,用来解决传统session的弊端。 JWT在前后端分离系统,通过JSON形式作为WEB应用中的令牌(token),用于…...

快排和归并

目录 前言 快速排序 相遇位置一定比key小的原理(大): 避免效率降低方法(快排优化) 三数取中(选key优化) 小区间优化 hoare版本快排 挖坑法快排 前后指针快排 非递归快排 归并排序 非递…...

VUE+SPRINGBOOT实现邮箱注册、重置密码、登录功能

随着互联网的发展,网站用户的管理、触达、消息通知成为一个网站设计是否合理的重要标志。目前主流互联网公司都支持手机验证码注册、登录。但是手机短信作为服务端网站是需要付出运营商通信成本的,而邮箱的注册、登录、重置密码,无疑成为了这…...

Vue 项目打包后环境变量丢失问题(清除缓存),区分.env和.env.*文件

Vue 项目打包后环境变量丢失问题(清除缓存),区分.env和.env.*文件 问题背景 今天在导报项目的时候遇到一个问题问题:在开发环境中一切正常,但在打包后的生产环境中,某些环境变量(如 VUE_APP_B…...

创建vue+electron项目流程

一个vue3和electron最基本的环境搭建步骤如下:// 安装 vite vue3 vite-plugin-vue-setup-extend less normalize.css mitt pinia vue-router npm create vuelatest npm i vite-plugin-vue-setup-extend -D npm i less -D npm i normalize.css -S &#xff0…...

3. 用Ruby on Rails创建一个在线商城

哎呀,你这是想要我写一篇超长篇的Ruby on Rails教程啊!好吧,既然你这么热情,那我就勉为其难地给你来一篇生动有趣、充满比喻夸张讽刺修辞手法的教程吧! 1. 准备工作 1.1. 安装Ruby和Rails 1.1.1 安装Ruby 下载Ruby…...

jmeter常用配置元件介绍总结之配置元件

系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...

SpringBoot获取请求参数

spring boot获取请求参数 文章目录 spring boot获取请求参数一、简单参数二、实体参数三、数组集合参数四、日期参数五、Json参数六、路径参数 开头概述 在Spring Boot框架中,处理HTTP请求并获取请求参数是开发Web应用程序中的一项基本任务。无论是简单的GET请求还是…...

【数据结构】树——顺序存储二叉树

写在前面 在学习数据结构前,我们早就听说大名鼎鼎的树,例如什么什么手撕红黑树大佬呀,那这篇笔记不才就深入浅出的介绍二叉树。 文章目录 写在前面一、树的概念及结构1.1、数的相关概念1.2、数的表示1.3 树在实际中的运用(表示文…...

Android中perform和handle方法的区别——以handleLaunchActivity与performLaunchActivity为例

在Android系统中,perform和handle方法经常出现在关键流程中,分别承担不同的职责。这种命名约定反映了框架设计中的分层思想,帮助开发者区分任务的调度与实现。本文通过handleLaunchActivity和performLaunchActivity这两个典型方法的源码分析&…...

聊聊依赖性测试

在软件测试中,我们常常面临一个挑战:多个模块之间高度耦合,任何一个模块的异常都可能导致整个系统崩溃。如何确保这些模块之间的协作无缝衔接?这就需要依赖性测试的助力! 什么是依赖性测试?它与功能测试、…...

C++11————线程库

thread 类的简单介绍 在 c11 之前,涉及到多线程问题,都是和平台相关的,比如 windows 和 linux 下各自有自己的接口,这使得代码的可移植性比较差。在 c11 中引入了线程库,使得 c在编程时不需要依赖第三方库了 函数名 …...

Java 动态代理初步

动态代理初步 package ReflectExercise;import ReflectExercise.pojo.BigStar; import ReflectExercise.pojo.ProxyUtil; import ReflectExercise.pojo.Star;/*** 动态代理* 无侵入的给方法增强功能*/ public class ReflectExercise {public static void main(String[] args) {…...

应用系统开发(10) 钢轨缺陷的检测系统

涡流检测系统框图 其中信号发生器为一定频率的正弦信号作为激励信号,这个激励信号同时输入给交流电桥中的两个检测线圈,将两个线圈输出的电压差值作为差分信号引出至差分放大电路进行放大,经过放大后信号变为低频的缺陷信号叠加在高频载波上…...

理解 \r、\n、\r\n 和 \n\r:换行符的区别和用法

\r(回车,Carriage Return): ASCII 码 13,对应的控制字符是 CR,将光标回到当前行的行首(而不会换到下一行),之后的输出会把之前的输出覆盖。\n(换行,Line Feed&#xff09…...

【jvm】StringTable为什么要调整

目录 1. 永久代内存限制与回收效率2. 堆内存的优势3. JDK版本的演进4. 实际应用的考虑 1. 永久代内存限制与回收效率 1.内存限制:在JDK 6及之前的版本中,StringTable位于永久代(PermGen space)中。然而,永久代的内存空…...

AI 驱动低代码平台:开创智能化用户体验新纪元

一、引言 人工智能技术如汹涌浪潮般迅猛发展,在各个行业掀起了颠覆性的变革风暴。于软件开发领域而言,AI 辅助编程与低代码平台的完美结合已然成为关键趋势,极大地提高了开发效率。然而,低代码平台的使命绝非仅仅局限于简化开发流…...

谈一谈QThread::CurrentThread和this->thread

QThread::CurrentThread是指的当前函数调用者者所在的线程 this->thread是指的当前对象所在的线程(对象创建出来的时候所在的线程) Qt文档说明 CurrentThread返回一个指向管理当前执行线程的QThread的指针 thread返回对象所在的线程 这两个函数所…...

ThriveX 博客管理系统前后端项目部署教程

前端 前端项目地址:https://github.com/LiuYuYang01/ThriveX-Blog 控制端项目地址:https://github.com/LiuYuYang01/ThriveX-Admin Vercel 首先以 Vercel 进行部署,两种方式部署都是一样的,我们以前端项目进行演示 首先我们先…...

STM32单片机设计防儿童人员误锁/滞留车内警报系统

目录 目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 1.电路图采用Altium Designer进行设计: 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 近年来在车辆逐渐普及的情况下,由于家长的疏忽,将…...

可认证数据资产合约标准协议(CMIDA-1)意见征集

标准背景 数据资产具备多维度的属性,涵盖行业特性、状态信息、资产类型、存储格式等。数据资产在不同流通主体之间可理解、可流通、可追溯、可信任的重要前提之一是存在统一的标准,缺失统一的标准,数据混乱冲突、一数多源、多样多类等问题将…...

Cyberchef配合Wireshark提取并解析HTTP/TLS流量数据包中的文件

本文将介绍一种手动的轻量级的方式,还原HTTP/TLS协议中传输的文件,为流量数据包中的文件分析提供帮助。 如果捕获的数据包中存在非文本类文件,例如png,jpg等图片文件,或者word,Excel等office文件异或是其他类型的二进…...

MYSQL- 展示事件信息 EVENTS 语句(十八)

13.7.5.18 SHOW EVENTS 语句 SHOW EVENTS[{FROM | IN} schema_name][LIKE pattern | WHERE expr]此语句显示有关事件管理器事件的信息,这些信息在第23.4节“使用事件调度器”中进行了讨论。它要求显示事件的数据库具有EVENT权限。 以最简单的形式,SHOW…...