【不写for循环】玩玩行列
利用numpy的并行操作可以比纯用Python的list快很多,不仅如此,代码往往精简得多。
So, 这篇来讲讲进阶的广播和花哨索引操作,少写几个for循环()。
目录
一个二维的例题
一个三维的例题
解法一
解法二
更难的三维例题
解法一
解法二
独热编码
写法一
写法二
一个二维的例题
从一个简单的问题开始,现在有一个向量:
弄出这个东西出来:
这个很简单:
x = [1, 2, 3]
res = []
for i in x:for j in x:res.append(i + j)
res = torch.tensor(res).reshape(3, 3)
res# output
tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])
以上内容是开玩笑的,下面开始认真起来。自然,这个很明显是个广播的送分题:
x = torch.tensor([1, 2, 3])
x + x.reshape(-1, 1)#output
tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])
一个三维的例题
现在有一个向量:
弄出这个东西出来:
不过现在a b c都是长度为4的向量。x是一个(3, 4)的矩阵(还是说明一下,这里不表示分块矩阵),目标是一个(3, 3, 4)的张量。
解法一
这个在GAT里面里面很常见(把“+”换成“concat”就是图卷积注意力的核心步骤之一)。当时看了一大圈的zhihu和CSDN,都是这么写的:
先x.repeat(1,3),横着重复,维度是(3, 3*4):
(||表示两个向量拼接)
然后x.reshape(3*3, -1), 维度变成(3*3, 4):
另一个竖着重复,x.repeat(3,1),维度是(3*3, 4):
然后相加reshape即可。
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
(x.repeat(1, 3).reshape(3*3, 4) + x.repeat(3, 1)).reshape(3, 3, 4)#output
tensor([[[2, 2, 2, 2],[3, 3, 3, 3],[4, 4, 4, 4]],[[3, 3, 3, 3],[4, 4, 4, 4],[5, 5, 5, 5]],[[4, 4, 4, 4],[5, 5, 5, 5],[6, 6, 6, 6]]])
解法二
后来想了一下其实可以直接广播。
解法一虽然复杂一点,但是把题目里面的“+”改成“||”就只能用解法一了。
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
x.unsqueeze(0) + x.unsqueeze(1) # (1, 3, 4) + (3, 1, 4)#output
tensor([[[2, 2, 2, 2],[3, 3, 3, 3],[4, 4, 4, 4]],[[3, 3, 3, 3],[4, 4, 4, 4],[5, 5, 5, 5]],[[4, 4, 4, 4],[5, 5, 5, 5],[6, 6, 6, 6]]])
更难的三维例题
现在有一个向量:
弄出这个东西出来:
不过现在a b c都是长度为4的向量。x是一个(3, 4)的矩阵(还是说明一下,这里不表示分块矩阵),两两做点积,目标是一个(3, 3)的张量。
先来一个错误示例:
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
np.dot(x.unsqueeze(0), x.unsqueeze(1)), torch.dot(x.unsqueeze(0), x.unsqueeze(1))
两种做法都是错的,torch.dot只支持1D的向量。np,dot处理高维度的张量的逻辑很不同,这里可以
查阅资料,不细说了。
解法一
可以用numpy里面最玄学的函数之一——np.meshgrid
先看看这个函数是干嘛的:
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
i, j = np.meshgrid(np.arange(x.shape[0]), np.arange(x.shape[1]), indexing='ij')
i, j# output
array([[0, 0, 0, 0],[1, 1, 1, 1],[2, 2, 2, 2]]array([[0, 1, 2, 3],[0, 1, 2, 3],[0, 1, 2, 3]])
np.arange(x.shape[0]) : array([0, 1, 2])
np.arange(x.shape[0]) : array([0, 1, 2, 3])
然后这个函数让前者往右重复,让后者往下重复,得到两个矩阵。然后细心看花哨索引和广播就知道:
x == x[i, j] !!!
了解这个函数干嘛后,那下面我们进入正题。
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
x1, x2 = x.unsqueeze(0), x.unsqueeze(1) # (1, 3, 4) (3, 1, 4)
x1, x2 = torch.broadcast_tensors(x1, x2) # (3, 3, 4) (3, 3, 4) 手动广播
i, j = np.meshgrid(np.arange(3), np.arange(3), indexing='ij')
torch.sum(x1[i, j, :] * x2[i, j, :], dim=-1)#output
tensor([[ 4, 8, 12],[ 8, 16, 24],[12, 24, 36]])
用花哨索引固定前两个维度不动,在第三个维度上相乘求和(就是点积)。搞定。
解法二
x = torch.tensor([[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3]])
x1, x2 = x.unsqueeze(0), x.unsqueeze(1) # (1, 3, 4) (3, 1, 4)
torch.einsum('ijk,ijk->ij', x1, x2) # 这个函数支持广播#output
tensor([[ 4, 8, 12],[ 8, 16, 24],[12, 24, 36]])
np.einsum
的全称是Einstein summation convention,即爱因斯坦求和约定。这个约定允许我们通过一个简洁的字符串表达式来指定复杂的数组运算,包括点积、矩阵乘法、张量收缩等。
这里是一个简单的运用。
独热编码
原来利用广播可以写独热编码。
写法一
一般独热编码可以这么写
a = np.array([1, 2, 1, 0])
category = len(np.unique(a))
eye = np.eye(category)
eye, eye[a]#output
array([[1., 0., 0.],[0., 1., 0.],[0., 0., 1.]]array([[0., 1., 0.],[0., 0., 1.],[0., 1., 0.],[1., 0., 0.]]
eye是一个单位矩阵,a构成了一个花哨索引,每次取eye的一行,然后取4次。
十分简洁。缺点是a的每个值必须在[0,category-1]中。
写法二
a = np.array(['a', 'b', 'c', 'd', 'e', 'f'])
b = np.array(['d', 'e', 'f'])
b = b.reshape(-1, 1) # (3, 1)
(a == b).astype(int)# output
array([[0, 0, 0, 1, 0, 0],[0, 0, 0, 0, 1, 0],[0, 0, 0, 0, 0, 1]]
支持各种类型的数据,而且还能应对b的某个元素不在a中的尴尬情况(此时一排都是0,因为一排都是不等于)。
有一个缺点是,在第四行时,Pycharm不知道这是一个a==b是一个布尔数组,在"astype"会画一个黄色,看着闹心(狗头)。
相关文章:
【不写for循环】玩玩行列
利用numpy的并行操作可以比纯用Python的list快很多,不仅如此,代码往往精简得多。 So, 这篇来讲讲进阶的广播和花哨索引操作,少写几个for循环()。 目录 一个二维的例题 一个三维的例题 解法一 解法二 更难的三维例题…...
【Nginx】反向代理Https时相关参数:
在Nginx代理后台HTTPS服务时,有几个关键的参数需要配置,以确保代理服务器能够正确地与后端服务器进行通信。一些重要参数的介绍: proxy_ssl_server_name:这个参数用于指定是否在TLS握手时通过SNI(Server Name Indicati…...
第 17 章 - Go语言 上下文( Context )
在Go语言中,context包为跨API和进程边界传播截止时间、取消信号和其他请求范围值提供了一种方式。它主要应用于网络服务器和长时间运行的后台任务中,用于控制一组goroutine的生命周期。下面我们将详细介绍context的定义、使用场景、取消和超时机制&#…...

Android Framework AMS(16)进程管理
该系列文章总纲链接:专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明: 说明:本章节主要解读AMS 进程方面的知识。关注思维导图中左上侧部分即可。 我们本章节主要是对Android进程管理相关知识有一个基本的了解。先来了解下L…...

STM32设计防丢防摔智能行李箱
目录 目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 1.电路图采用Altium Designer进行设计: 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 随着科技的不断发展,嵌入式系统、物联网技术、智能设备…...

【异常解决】Linux shell报错:-bash: [: ==: 期待一元表达式 解决方法
博主介绍:✌全网粉丝21W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

ML 系列: 第 23 节 — 离散概率分布 (多项式分布)
目录 一、说明 二、多项式分布公式 2.1 多项式分布的解释 2.2 示例 2.3 特殊情况:二项分布 2.4 期望值 (Mean) 2.5 方差 三、总结 3.1 python示例 一、说明 伯努利分布对这样一种情况进行建模:随机变量可以采用两个可能的值&#…...
Webpack 1.13.2 执行 shell 命令解决 打印时没有背景色和文字颜色的问题
这是因为 Webpack 1.13.2 不支持新的插件钩子 API。Webpack 1 的插件系统使用的是 plugin 方法,而不是 Webpack 4 中的 hooks。 在 Webpack 1 中,你可以使用以下代码来确保 sed 命令在打包完成后执行: const { exec } require(child_proce…...

C++构造函数详解
构造函数详解:C 中对象初始化与构造函数的使用 在 C 中,构造函数是一种特殊的成员函数,它在创建对象时自动调用,用来初始化对象的状态。构造函数帮助我们确保每个对象在被创建时就处于一个有效的状态,并且在不传递任何…...

POI实现根据PPTX模板渲染PPT
目录 1、前言 2、了解pptx文件结构 3、POI组件 3.1、引入依赖 3.2、常见的类 3.3、实现原理 3.4、关键代码片段 3.4.1、获取ppt实例 3.4.2、获取每页幻灯片 3.4.3、循环遍历幻灯片处理 3.4.3.1、文本 3.4.3.2、饼图 3.4.3.3、柱状图 3.4.3.4、表格 3.4.3.5、本地…...

【论文模型复现】深度学习、地质流体识别、交叉学科融合?什么情况,让我们来看看
文献:蓝茜茜,张逸伦,康志宏.基于深度学习的复杂储层流体性质测井识别——以车排子油田某井区为例[J].科学技术与工程,2020,20(29):11923-11930. 本文目录 一、前言二、文献阅读-基于深度学习的复杂储层流体性质测井识别2.1 摘要2.2 当前研究不足2.3 本文创新2.4 论文…...

树的直径计算:算法详解与实现
树的直径计算:算法详解与实现 1. 引言2. 算法概述3. 伪代码实现4. C语言实现5. 算法分析6. 结论在图论中,树的直径是一个关键概念,它表示树中任意两点间最长路径的长度。对于给定的树T=(V,E),其中V是顶点集,E是边集,树的直径定义为所有顶点对(u,v)之间最短路径的最大值。…...

conda创建 、查看、 激活、删除 python 虚拟环境
1、创建 python 虚拟环境 ,假设该环境命名为 “name”。 conda create -n name python3.11 2、查看 python 虚拟环境。 conda info -e 3、激活使用 python 虚拟环境。 conda activate name 4、删除 python 虚拟环境 conda remove -n name --all 助力快速掌握数据集…...

vs2022搭建opencv开发环境
1 下载OpenCV库 https://opencv.org/ 下载对应版本然后进行安装 将bin目录添加到系统环境变量opencv\build\x64\vc16\bin 复制该路径 打开高级设置添加环境变量 vs2022新建一个空项目 修改属性添加头文件路径和库路径 修改链接器,将OpenCV中lib库里的o…...

NVIDIA NIM 开发者指南:入门
NVIDIA NIM 开发者指南:入门 NVIDIA 开发者计划 想要了解有关 NIM 的更多信息?加入 NVIDIA 开发者计划,即可免费访问任何基础设施云、数据中心或个人工作站上最多 16 个 GPU 上的自托管 NVIDIA NIM 和微服务。 加入免费的 NVIDIA 开发者计…...

探索Python网络请求新纪元:httpx库的崛起
文章目录 **探索Python网络请求新纪元:httpx库的崛起**第一部分:背景介绍第二部分:httpx库是什么?第三部分:如何安装httpx库?第四部分:简单的库函数使用方法1. 发送GET请求2. 发送POST请求3. 超…...
学了Arcgis的水文分析——捕捉倾泻点,河流提取与河网分级,3D图层转要素失败的解决方法,测量学综合实习网站存着
ArcGIS水文分析实战教程(7)细说流域提取_汇流域栅格-CSDN博客 ArcGIS水文分析实战教程(6)河流提取与河网分级_arcgis的dem河流分级-CSDN博客 ArcGIS水文分析实战教程(5)细说流向与流量-CSDN博客 ArcGIS …...

QQ 小程序已发布,但无法被搜索的解决方案
前言 我的 QQ 小程序在 2024 年 8 月就已经审核通过,上架后却一直无法被搜索到。打开后,再在 QQ 上下拉查看 “最近使用”,发现他出现一下又马上消失。 上线是按正常流程走的,开发、备案、审核,没有任何违规…...

【C++】拷贝构造 和 赋值运算符重载
目录: 一、拷贝构造 (一)拷贝函数的特点 二、赋值运算符重载 (一)运算符重载 (二)赋值运算符重载 正文 一、拷贝构造 如果一个构造函数的第一个参数是自身类类型的引用,且任何…...

21.UE5游戏存档,读档,函数库
2-23 游戏存档、读档、函数库_哔哩哔哩_bilibili 目录 1.存档蓝图 2.函数库 2.1保存存档 2.2读取存档: 3.加载游戏,保存游戏 3.1游戏实例对象 3.2 加载游戏 3.3保存游戏 这一节的内容较为错综复杂,中间没有运行程序进行阶段性成果的验…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...