使用 Python 和 Py2Neo 构建 Neo4j 管理脚本
Neo4j 是一个强大的图数据库,适合处理复杂的关系型数据。借助 Python 的 py2neo
库,我们可以快速实现对 Neo4j 数据库的管理和操作。本文介绍一个功能丰富的 Python 脚本,帮助用户轻松管理 Neo4j 数据库,包含启动/停止服务、清空数据、统计分析、图谱可视化等功能。
1. 脚本功能一览
用户通过数字选择对应的功能:
- 启动 Neo4j:通过命令行启动 Neo4j 服务。
- 停止 Neo4j:停止运行中的 Neo4j 服务。
- 清空 Neo4j:删除数据库中所有数据。
- 图谱可视化:展示知识图谱的结构,并生成图片。
- 统计分析:统计节点和关系的数量。
- 导出图谱:将图谱导出为 JSON 文件,支持选择保存路径。
- 数据健康检查:检查图谱中的孤立节点和重复节点。
- 退出程序。
2. 脚本核心实现
2.1 脚本入口
以下是功能菜单的实现,每个功能都有对应的函数,用户输入数字即可调用:
def main():while True:print("\n请选择一个功能:")print("1. 启动 Neo4j")print("2. 停止 Neo4j")print("3. 清空 Neo4j")print("4. 图谱可视化")print("5. 统计分析")print("6. 导出图谱")print("7. 数据健康检查")print("8. 退出")choice = input("输入功能编号:")if choice == "1":start_neo4j()elif choice == "2":stop_neo4j()elif choice == "3":clear_database()elif choice == "4":visualize_graph()elif choice == "5":statistical_analysis()elif choice == "6":export_graph()elif choice == "7":health_check()elif choice == "8":print("退出程序。")breakelse:print("无效输入,请重试!")
2.2 功能实现
启动/停止 Neo4j 服务
借助系统命令行操作,我们可以在另一个终端中启动或停止 Neo4j:
def start_neo4j():"""启动 Neo4j 服务"""os.system("neo4j console &")print("Neo4j 服务已启动...")def stop_neo4j():"""停止 Neo4j 服务"""os.system("neo4j stop")print("Neo4j 服务已停止...")
清空 Neo4j 数据
利用 Cypher 查询可以快速清空图数据库中的所有节点和关系:
def clear_database():"""清空当前知识图谱中的所有数据"""graph.run("MATCH (n) DETACH DELETE n")print("图谱已清空!")
图谱可视化
使用 py2neo
查询数据,结合 networkx
和 matplotlib
,我们可以绘制出知识图谱的可视化图像:
def visualize_graph():"""图谱可视化:生成图片展示"""query = "MATCH (n)-[r]->(m) RETURN n.name AS node1, type(r) AS relationship, m.name AS node2 LIMIT 50"results = graph.run(query).data()if not results:print("图谱中没有可视化的数据。")returnG = nx.DiGraph() # 使用有向图for record in results:node1 = record["node1"] or "Unnamed Node"node2 = record["node2"] or "Unnamed Node"relationship = record["relationship"] or "RELATED_TO"G.add_edge(node1, node2, relationship=relationship)plt.figure(figsize=(12, 8))pos = nx.spring_layout(G) # 布局nx.draw(G, pos, with_labels=True, node_color="skyblue", node_size=2000, font_size=12, font_weight="bold", arrowsize=15)edge_labels = nx.get_edge_attributes(G, "relationship")nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)plt.title("Neo4j Graph Visualization")plt.show()
数据统计分析
通过 Cypher 查询统计图谱中的节点和关系数量:
def statistical_analysis():"""统计分析:节点和关系数量"""node_count = graph.run("MATCH (n) RETURN COUNT(n) AS count").data()[0]["count"]relationship_count = graph.run("MATCH ()-[r]->() RETURN COUNT(r) AS count").data()[0]["count"]print(f"节点数量:{node_count}")print(f"关系数量:{relationship_count}")
导出图谱为 JSON 文件
允许用户选择保存路径,将查询结果保存为 JSON 格式:
def export_graph():"""导出图谱为 JSON 文件"""query = "MATCH (n)-[r]->(m) RETURN n, r, m"results = graph.run(query).data()data = [{"node1": dict(record["n"]), "relationship": dict(record["r"]), "node2": dict(record["m"])} for record in results]root = Tk()root.withdraw() # 隐藏主窗口save_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])if save_path:with open(save_path, "w", encoding="utf-8") as f:json.dump(data, f, indent=4)print(f"图谱已导出至:{save_path}")
数据健康检查
检查图谱中的孤立节点(没有关系)和重复节点:
def health_check():"""数据健康检查"""orphan_nodes = graph.run("MATCH (n) WHERE NOT (n)--() RETURN COUNT(n) AS count").data()[0]["count"]duplicate_nodes = graph.run("MATCH (n) WITH n.name AS name, COUNT(*) AS count WHERE count > 1 RETURN COUNT(name) AS count").data()[0]["count"]print(f"孤立节点数量:{orphan_nodes}")print(f"重复节点数量:{duplicate_nodes}")
3. 图谱可视化示例
执行“图谱可视化”功能后,脚本会绘制图谱的结构图
4. 使用前的准备
-
环境依赖安装:
确保已安装以下库:pip install py2neo networkx matplotlib
-
Neo4j 连接配置:
修改脚本中连接数据库的代码:graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
-
运行脚本:
运行脚本文件:python neo4j_manager.py
相关文章:
使用 Python 和 Py2Neo 构建 Neo4j 管理脚本
Neo4j 是一个强大的图数据库,适合处理复杂的关系型数据。借助 Python 的 py2neo 库,我们可以快速实现对 Neo4j 数据库的管理和操作。本文介绍一个功能丰富的 Python 脚本,帮助用户轻松管理 Neo4j 数据库,包含启动/停止服务、清空数…...

Centos 7 安装wget
Centos 7 安装wget 最小化安装Centos 7 的话需要上传wget rpm包之后再路径下安装一下。rpm包下载地址(http://mirrors.163.com/centos/7/os/x86_64/Packages/) 1、使用X-ftp 或者WinSCP等可以连接上传的软件都可以首先连接服务器,这里我用的…...

定时器的小应用
第一个项目 第一步,RCC开启时钟,这个基本上每个代码都是第一步,不用多想,在这里打开时钟后,定时器的基准时钟和整个外设的工作时钟就都会同时打开了 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);第二步&…...
linux企业中常用NFS、ftp服务
1.静态ip配置 修改ip地址为静态vim /etc/sysconfig/network-scripts/ifcfg-enxxx BOOTPROTO"static" IPADDR192.168.73.10 GATEWAY192.168.73.2 # 该配置与虚拟机网关一致 NETMASK255.255.255.0重启网卡:systemctl restart network.service ping不通域名…...

数据结构与算法分析模拟试题及答案5
模拟试题(五) 一、单项选择题(每小题 2 分,共20分) (1)队列的特点是( )。 A)先进后出 B)先进先出 C)任意位置进出 D࿰…...

.NET 9.0 中 System.Text.Json 的全面使用指南
以下是一些 System.Text.Json 在 .NET 9.0 中的使用方式,包括序列化、反序列化、配置选项等,并附上输出结果。 基本序列化和反序列化 using System; using System.Text.Json; public class Program {public class Person{public string Name { get; se…...

Python自动检测requests所获得html文档的编码
使用chardet库自动检测requests所获得html文档的编码 使用requests和BeautifulSoup库获取某个页面带来的乱码问题 使用requests配合BeautifulSoup库,可以轻松地从网页中提取数据。但是,当网页返回的编码格式与Python默认的编码格式不一致时,…...

11.12机器学习_特征工程
四 特征工程 1 特征工程概念 特征工程:就是对特征进行相关的处理 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。 …...

RAG经验论文《FACTS About Building Retrieval Augmented Generation-based Chatbots》笔记
《FACTS About Building Retrieval Augmented Generation-based Chatbots》是2024年7月英伟达的团队发表的基于RAG的聊天机器人构建的文章。 这篇论文在待读列表很长时间了,一直没有读,看题目以为FACTS是总结的一些事实经验,阅读过才发现FAC…...

【配置后的基本使用】CMake基础知识
🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀各种软件安装与配置_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1.…...

ollama+springboot ai+vue+elementUI整合
1. 下载安装ollama (1) 官网下载地址:https://github.com/ollama/ollama 这里以window版本为主,下载链接为:https://ollama.com/download/OllamaSetup.exe。 安装完毕后,桌面小图标有一个小图标,表示已安装成功&…...
【项目开发】理解SSL延迟:为何HTTPS比HTTP慢?
未经许可,不得转载。 文章目录 前言HTTP与HTTPS的耗时差异TCP握手HTTPS的额外步骤:SSL握手使用curl测量SSL延迟性能与安全的权衡前言 在互联网发展的早期阶段,Netscape公司设计了SSL(Secure Sockets Layer)协议,为网络通信提供加密和安全性。有人曾提出一个大胆的设想:…...

2.STM32之通信接口《精讲》之USART通信
有关通信详解进我主页观看其他文章!【免费】SPIIICUARTRS232/485-详细版_UART、IIC、SPI资源-CSDN文库 通过以上可以看出。根据电频标准,可以分为TTL电平,RS232电平,RS485电平,这些本质上都属于串口通信。有区别的仅是…...
Bootstrap和jQuery开发案例
目录 1. Bootstrap和jQuery简介及优势2. Bootstrap布局与组件示例:创建一个响应式的表单界面 3. jQuery核心操作与事件处理示例:使用jQuery为表单添加交互 4. Python后端实现及案例代码案例 1:用户登录系统Flask后端代码前端代码 5. 设计模式…...

Qt 之 qwt和QCustomplot对比
QWT(Qt Widgets for Technical Applications)和 QCustomPlot 都是用于在 Qt 应用程序中绘制图形和图表的第三方库。它们各有优缺点,适用于不同的场景。 以下是 QWT 和 QCustomPlot 的对比分析: 1. 功能丰富度 QWT 功能丰富&a…...

【STM32】MPU6050简介
文章目录 MPU6050简介MPU6050关键块带有16位ADC和信号调理的三轴MEMS陀螺仪具有16位ADC和信号调理的三轴MEMS加速度计I2C串行通信接口 MPU6050对应的数据手册:MPU6050 陀螺仪加速度计 链接: https://pan.baidu.com/s/13nwEhGvsfxx0euR2hMHsyw?pwdv2i6 提取码: v2i6…...
Oracle 单机及 RAC 环境 归档模式及路径修改
Oracle 数据库的使用过程中经常会根据需求的不同而调整归档模式,也经常会修改归档文件存放路径。 下面分别演示单机及 RAC 环境下修改归档模式及路径的操作步骤。 一、单机环境 1.查询当前归档模式及路径 SQL> archive log list Database log mode …...

抽象java入门1.5.3.1——类的进阶
前言:在研究神技代码Hello word的时候,发现了一个重大公式bug,在代码溯源中,我发现了一个奇怪的东西,就是OUT不是类中类(不是常规类的写法) 内容总结: 代码运行的顺序复习 正片开始…...

python——模块 迭代器 正则
一、python模块 先创建一个 .py 文件,这个文件就称之为 一个模块 Module。 使用模块的优点: 模块化编程,多文件编程 1.2 模块的使用 1.2.1 import语句 想要B.py文件中,使用A.py文件,只需要在B.py文件中使用关键字…...

QT仿QQ聊天项目,第三节,实现聊天界面
一,界面控件示意图 界面主要由按钮QPushButton,标签QLabel,列表QListWidget 要注意的是QListWidget既是实现好友列表的控件,也是实现聊天气泡的控件 二,控件样式 QPushButton#btn_name {border:none;}QPushButton#btn_close {border:1px;bac…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...