【安全科普】NUMA防火墙诞生记

一、我为啥姓“NUMA”
随着网络流量和数据包处理需求的指数增长,曾经的我面对“高性能、高吞吐、低延迟”的要求,逐渐变得心有余而力不足。
多CPU技术应运而生,SMP(对称多处理)和NUMA(非一致性内存访问)成为当下最适用的多CPU硬件架构。
SMP的主要特征是“共享”,即所有CPU共享使用全部资源,包括内存、总线和I/O;它的缺点是核数增加到一定程度,就会达到内存读取的性能瓶颈。

SMP架构
为了解决这个问题,工程师们设计了NUMA架构:将CPU划分到不同组(Node),每个节点都有自己的内存和计算资源,处理器可以更灵活地分配资源,提升整体性能和效率。
此外,NUMA架构还可以通过增加节点数量,扩展处理器的计算和存储能力,这让它非常适应大规模并行处理场景。

NUMA架构
基于NUMA架构设计成为防火墙“升级”的优选方案,改良处理器与本地内存之间的访问路径,满足高吞吐、低延迟的网络安全应用的需求,现在的我已经成为了百G防火墙队伍中的主力军。
二、升级后的我强在哪
1、高并发处理能力
每个处理器节点都可以独立处理本地的连接请求和数据流量。通过负载均衡技术(如基于哈希的负载均衡),NUMA防火墙能够将流量均匀分布到各个处理器节点,避免单点瓶颈的问题。
例如,使用接收端扩展(RSS)技术,可以将入站流量根据哈希值分配到不同的CPU核,提高并发处理能力。
2、数据包处理自动化
NUMA架构支持高效的数据包处理流水线。每个处理器节点可以专注于流水线中的特定阶段,包括:
- 数据包分类,根据预定义的规则集,分类数据包。
- 状态跟踪,维护连接状态表,实现状态检测。
- 策略匹配,根据安全策略进行包过滤和策略应用。
- 深度包检测(DPI),对数据包内容进行深度检测,以识别应用层攻击。
通过流水线实现流程自动化,各处理器节点并行计算不同的数据包处理阶段,显著提高整体工作效率。
3、智能流量调度
智能流量调度算法可以将流量合理分配到各个处理器节点,避免多处理器间的不均衡负载。常用的调度算法包括:
- 轮询调度(Round-Robin),简单高效,将流量均匀分配到各处理器节点。
- 最短路径优先(SPF),根据路径长度和处理器负载,动态调整流量分配。
- 连接哈希调度,根据连接的哈希值,确保同一连接的流量始终由同一处理器节点计算,提高缓存命中率。
结合实际流量特点选用调度算法,可以大幅提升NUMA防火墙的性能与效率。
三、助我升级的关键技术
1、高效数据包过滤
NUMA防火墙通过多核并行处理能力,实现高效的数据包过滤。每个处理器节点都可以独立运行包过滤算法,包括基于规则集的包过滤、状态检测包过滤和应用层包过滤(Snort、Suricata等)。
2、深度包检测(DPI)
DPI是下一代防火墙的重要功能,可以识别并防御应用层攻击。在NUMA架构下,每个处理器节点会进行不同的数据流处理或DPI任务,能够完成大规模数据包流量的处理,实现高性能深度包检测。
3、连接状态维护
NUMA防火墙需要维护大量的连接状态信息,以支持状态检测。可以将连接状态表分布到各处理器节点,减少跨节点访问的延迟;应用哈希分区技术,将连接状态信息按哈希值分配至不同节点,提高访问效率。
4、安全策略执行
NUMA架构中的安全策略执行同样可以分布在多个处理器节点,每个节点根据预定义的策略规则,独立执行安全策略,包括访问控制、流量限制和入侵检测功能。使用高效的规则匹配算法(Aho-Corasick算法等),还能够显著提高策略执行效率。
NUMA防火墙具备多核并行处理、内存局部优化、智能流量调度、高效的包过滤及DPI等核心能力,为用户提供高性能、低延迟、强扩展性的创新体验。随着网络安全需求的日新月异,NUMA架构在高性能防火墙设计中的应用也将更加广泛和深入。
相关文章:
【安全科普】NUMA防火墙诞生记
一、我为啥姓“NUMA” 随着网络流量和数据包处理需求的指数增长,曾经的我面对“高性能、高吞吐、低延迟”的要求,逐渐变得心有余而力不足。 多CPU技术应运而生,SMP(对称多处理)和NUMA(非一致性内存访问&a…...
机器学习day2-特征工程
四.特征工程 1.概念 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 将任意数据(文本或图像等)转换为数字特征,对特征进行相关的处理 步骤:1.特征提取;2.无量纲化(预处理…...
Python数据分析NumPy和pandas(三十五、时间序列数据基础)
时间序列数据是许多不同领域的结构化数据的重要形式,例如金融、经济、生态学、神经科学和物理学。在许多时间点重复记录的任何内容都会形成一个时间序列。许多时间序列是固定频率的,也就是说,数据点根据某些规则定期出现,例如每 1…...
Python 小高考篇(6)常见错误及排查
目录 TypeError拼接字符串和数字错误示范正确示范 数字、字符串当成函数错误示范 给函数传入未被定义过的参数错误示范 传入的参数个数不正确错误示范 字符串相乘错误示范正确示范 量取整数的长度错误示范正确示范 格式化字符串时占位符个数不正确错误示范 给复数比较大小错误示…...
k8s上部署redis高可用集群
介绍: Redis Cluster通过分片(sharding)来实现数据的分布式存储,每个master节点都负责一部分数据槽(slot)。 当一个master节点出现故障时,Redis Cluster能够自动将故障节点的数据槽转移到其他健…...
C++的类和对象
在C中,类(class)和对象(object)是面向对象编程(OOP)的核心概念。以下是它们的详细介绍: 1. 类(Class) 定义: 类是用来定义一个新的数据类型&…...
自动驾驶系列—深入解析自动驾驶车联网技术及其应用场景
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...
机器学习(1)
一、机器学习 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法ÿ…...
深入理解 Redis跳跃表 Skip List 原理|图解查询、插入
1. 简介 跳跃表 ( skip list ) 是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 在 Redis 中,跳跃表是有序集合键的底层实现之一,那么这篇文章我们就来讲讲跳跃表的实现原理。 2. …...
Halcon HImage 与 Qt QImage 的相互转换(修订版)
很久以前,我写过一遍文章来介绍 HImage 和 QImage 之间的转换方法。(https://blog.csdn.net/liyuanbhu/article/details/91356988) 这个代码其实是有些问题的。因为我们知道 QImage 中的图像数据不一定是连续的,尤其是图像的宽度…...
【Golang】——Gin 框架中的模板渲染详解
Gin 框架支持动态网页开发,能够通过模板渲染结合数据生成动态页面。在这篇文章中,我们将一步步学习如何在 Gin 框架中配置模板、渲染动态数据,并结合静态资源文件创建一个功能完整的动态网站。 文章目录 1. 什么是模板渲染?1.1 概…...
CSS:导航栏三角箭头
用CSS实现导航流程图的样式。可根据自己的需求进行修改,代码精略的写了一下。 注:场景一和场景二在分辨率比较低的情况下会有一个1px的缝隙不太优雅,自行处理。有个方法是直接在每个外面包一个DIV,用动态样式设置底色。 场景一、…...
onlyoffice Command service(命令服务)使用示例
一、说明 文档在这里:https://api.onlyoffice.com/docs/docs-api/additional-api/command-service/ 命令服务提供有几个简单的接口封装。也提供了前端和后端同时操作文档的可能。 二、正文 命令服务地址:https://documentserver/coauthoring/Com…...
QSS 设置bug
问题描述: 在QWidget上add 一个QLabel,但是死活不生效 原因: c 主程序如下: QWidget* LOGO new QWidget(logo_wnd);LOGO->setFixedSize(logo_width, 41);LOGO->setObjectName("TittltLogo");QVBoxLayout* tit…...
交换排序——快速排序
交换排序——快速排序 7.7 交换排序——快速排序快速排序概念c语言的库函数qsort快速排序框架quickSort 7.7 交换排序——快速排序 快速排序概念 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(下文简称快排),其基本思想为&a…...
nodejs入门(1):nodejs的前后端分离
一、引言 我关注nodejs还是从前几年做了的一个电力大数据展示系统开始的,当然,我肯定是很多年的计算机基础的,万变不离其宗。 现在web网站都流行所谓的前后端结构,不知不觉我也开始受到这个影响,以前都是前端直接操作…...
笔记|M芯片MAC (arm64) docker上使用 export / import / commit 构建amd64镜像
很简单的起因,我的东西最终需要跑在amd64上,但是因为mac的架构师arm64,所以直接构建好的代码是没办法跨平台运行的。直接在arm64上pull下来的docker镜像也都是arm64架构。 检查镜像架构: docker inspect 8135f475e221 | grep Arc…...
gorm框架
连接 需要下载mysql的驱动 go get gorm.io/driver/mysql go get gorm.io/gorm 约定 主键:GORM 使用一个名为ID 的字段作为每个模型的默认主键。表名:默认情况下,GORM 将结构体名称转换为 snake_case 并为表名加上复数形式。 例如…...
免费送源码:Java+Springboot+MySQL Springboot多租户博客网站的设计 计算机毕业设计原创定制
Springboot多租户博客网站的设计 摘 要 博客网站是当今网络的热点,博客技术的出现使得每个人可以零成本、零维护地创建自己的网络媒体,Blog站点所形成的网状结构促成了不同于以往社区的Blog文化,Blog技术缔造了“博客”文化。本文课题研究的“…...
【ASR技术】WhisperX安装使用
介绍 WhisperX 是一个开源的自动语音识别(ASR)项目,由 m-bain 开发。该项目基于 OpenAI 的 Whisper 模型,通过引入批量推理、强制音素对齐和语音活动检测等技术。提供快速自动语音识别(large-v2 为 70 倍实时…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
