hive复杂数据类型Array Map Struct 炸裂函数explode

1、Array的使用
create table tableName(
......
colName array<基本类型>
......
)
说明:下标从0开始,越界不报错,以null代替
arr1.txtzhangsan 78,89,92,96
lisi 67,75,83,94
王五 23,12
新建表:
create table arr1(name string,scores array<int>
)
row format delimited
fields terminated by '\t'
collection items terminated by ',';
加载数据:
load data local inpath '/home/hivedata/arr1.txt' into table arr1;hive (yhdb)> select * from arr1;
OK
arr1.name arr1.scores
zhangsan [78,89,92,96]
lisi [67,75,83,94]
王五 [23,12]
Time taken: 0.32 seconds, Fetched: 3 row(s)
需求:
1、查询每一个学生的第一个成绩
select name,scores[0] from arr1;
name _c1
zhangsan 78
lisi 67
王五 23
2、查询拥有三科成绩的学生的第二科成绩
select name,scores[1] from arr1 where size(scores) >=3;3、查询所有学生的总成绩
select name,scores[0]+scores[1]+nvl(scores[2],0)+nvl(scores[3],0) from arr1;以上写法有局限性,因为你不知道有多少科成绩,假如知道了,这样写也太Low
2、展开函数的使用 explode
为什么学这个,因为我们想把数据,变为如下格式
zhangsan 78
zhangsan 89
zhangsan 92
zhangsan 96
lisi 67
lisi 75
lisi 83
lisi 94
王五 23
王五 12
explode 专门用于炸集合。
select explode(scores) from arr1;col
78
89
92
96
67
75
83
94
23
12
想当然的以为加上name 就OK ,错误!
hive (yhdb)> select name,explode(scores) from arr1;
FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
-- lateral view:虚拟表。
会将UDTF函数生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行join来达到数据聚合的目的。
具体使用:
select name,cj from arr1 lateral view explode(scores) mytable as cj;解释一下:
lateral view explode(scores) 形成一张虚拟的表,表名需要自己起
里面的列有几列,就起几个别名,其他的就跟正常的虚拟表一样了。name cj
zhangsan 78
zhangsan 89
zhangsan 92
zhangsan 96
lisi 67
lisi 75
lisi 83
lisi 94
王五 23
王五 12select name,sum(cj) from arr1 lateral view explode(scores) mytable as cj group by name;
等同于如下写法:
select name,sum(score) from(select name,score from arr1 lateral view explode(scores) myscore as score ) t group by name;

需求4:查询每个人的最后一科的成绩
select name,scores[size(scores)-1] from arr1;

3、Map的使用
语法格式:
create table tableName(
.......
colName map<T,T>
......
)
上案例:
zhangsan chinese:90,math:87,english:63,nature:76
lisi chinese:60,math:30,english:78,nature:0
wangwu chinese:89,math:25
建表:
create table map1(name string,scores map<string,int>
)
row format delimited
fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':';
加载数据:
load data local inpath '/home/hivedata/map1.txt' into table map1;

需求:
需求一:
#查询数学大于35分的学生的英语和自然成绩
select name,scores['english'],scores['nature'] from map1
where scores['math'] > 35;需求二:-- 查看每个人的前两科的成绩总和
select name,scores['chinese']+scores['math'] from map1;OK
name _c1
zhangsan 177
lisi 90
wangwu 114
Time taken: 0.272 seconds, Fetched: 3 row(s)需求三:将数据展示为:
-- 展开效果
zhangsan chinese 90
zhangsan math 87
zhangsan english 63
zhangsan nature 76select name,subject,cj from map1 lateral view explode(scores) mytable as subject,cj ;name subject cj
zhangsan chinese 90
zhangsan math 87
zhangsan english 63
zhangsan nature 76
lisi chinese 60
lisi math 30
lisi english 78
lisi nature 0
wangwu chinese 89
wangwu math 25需求四:统计每个人的总成绩
select name,sum(cj) from map1 lateral view explode(scores) mytable as subject,cj group by name;
假如根据总成绩降序排序,不能在order by 中使用虚拟表的别名
select name,sum(score) sumScore from map1 lateral view explode(scores) myscore as subject,score group by name order by sumScore desc;

行转列
需求5:
-- 将下面的数据格式
zhangsan chinese 90
zhangsan math 87
zhangsan english 63
zhangsan nature 76
lisi chinese 60
lisi math 30
lisi english 78
lisi nature 0
wangwu chinese 89
wangwu math 25
wangwu english 81
wangwu nature 9
-- 转成:
zhangsan chinese:90,math:87,english:63,nature:76
lisi chinese:60,math:30,english:78,nature:0
wangwu chinese:89,math:25,english:81,nature:9
造一些数据(新建表):
create table map_temp as
select name,subject,cj from map1 lateral view explode(scores) mytable as subject,cj ;
第一步,先将学科和成绩形成一个kv对,其实就是字符串拼接
学习一下 concat的用法:
hive (yhdb)> select concat('hello','world');
OK
_c0
helloworld
Time taken: 0.333 seconds, Fetched: 1 row(s)
hive (yhdb)> select concat('hello','->','world');
OK
_c0
hello->world
Time taken: 0.347 seconds, Fetched: 1 row(s)实战一下:
select name,concat(subject,":",cj) from map_temp;结果:
name _c1
zhangsan chinese:90
zhangsan math:87
zhangsan english:63
zhangsan nature:76
lisi chinese:60
lisi math:30
lisi english:78
lisi nature:0
wangwu chinese:89
wangwu math:25以上这个结果再合并:
select name,collect_set(concat(subject,":",cj)) from map_temp
group by name;lisi ["nature:0","english:78","math:30","chinese:60"]
wangwu ["math:25","chinese:89"]
zhangsan ["nature:76","english:63","math:87","chinese:90"]
将集合中的元素通过逗号进行拼接:
select name,concat_ws(",",collect_set(concat(subject,":",cj))) from map_temp group by name;结果:
zhangsan chinese:90,math:87,english:63,nature:76
lisi chinese:60,math:30,english:78,nature:0
wangwu chinese:89,math:25,english:81,nature:9学习到了三个函数:
concat 进行字符串拼接
collect_set() 将分组的数据变成一个set集合。里面的元素是不可重复的。
collect_list(): 里面是可以重复的。
concat_ws(分隔符,集合) : 将集合中的所有元素通过分隔符变为字符串。
想将数据变为:
lisi {"chinese":"60","math":"30","english":"78","nature":"0"}
wangwu {"chinese":"89","math":"25"}
zhangsan {"chinese":"90","math":"87","english":"63","nature":"76"}
4、Struct结构体
create table tableName(
........
colName struct<subName1:Type,subName2:Type,........>
........
)有点类似于java类
调用的时候直接.
colName.subName
数据准备:
zhangsan 90,87,63,76
lisi 60,30,78,0
wangwu 89,25,81,9
创建表:
create table if not exists struct1(
name string,
score struct<chinese:int,math:int,english:int,natrue:int>
)
row format delimited
fields terminated by '\t'
collection items terminated by ',';
加载数据:
load data local inpath '/home/hivedata/struct1.txt' into table struct1;
查看数据,有点像map:
hive (yhdb)> select * from struct1;
OK
struct1.name struct1.score
zhangsan {"chinese":90,"math":87,"english":63,"natrue":76}
lisi {"chinese":60,"math":30,"english":78,"natrue":0}
wangwu {"chinese":89,"math":25,"english":81,"natrue":9}
Time taken: 0.272 seconds, Fetched: 3 row(s)
查询数学大于35分的学生的英语和语文成绩select name, score.english,score.chinese from struct1 where score.math > 35;这个看着和map很像,所以我认为map里 也可以使用 xxx.xxx或者说我这里也可以使用[]
经过尝试:不可以。
相关文章:
hive复杂数据类型Array Map Struct 炸裂函数explode
1、Array的使用 create table tableName( ...... colName array<基本类型> ...... ) 说明:下标从0开始,越界不报错,以null代替 arr1.txtzhangsan 78,89,92,96 lisi 67,75,83,94 王五 23,12 新建表: create table arr1(n…...
FIFO架构专题-FIFO是什么
目录 简介: FIFO参数: 1.宽度WIDTH(一次位数) 2.深度DEEPTH(存多少次) FIFO的分类: 同步FIFO 异步FIFO 读写位宽不同的FIFO FIFO信号介绍 写时钟 写数据 写使能 读时钟 读数据 读…...
Pythony——多线程简单爬虫实现
简单爬虫实现 import requests from bs4 import BeautifulSoup# 生成要爬取的网页地址列表,这里是博客园的分页地址,从第1页到第50页 urls [f"https://www.cnblogs.com/#p{i}" for i in range(1, 50 1)]# 生产者函数——负责下载网页内容 d…...
如何修改 a 链接的样式
在CSS中,你可以使用选择器来针对HTML中的特定元素(例如<a>标签,也就是链接)进行修改样式。以下是一些常见的修改<a>链接样式的方法: 移除下划线: a { text-decoration: none; } 修改链接的…...
第6章 详细设计-6.5 软硬件接口文档设计
6.5 软硬件接口文档设计 一般的产品都包含硬件和软件两部分,产品设计阶段需要确保硬件开发人员和软件开发的沟通准确、高效。所以需要一份书面的文档来承载软件和硬件之间的沟通细节。以下面的细水雾除尘设备为例进行讲解,涉及软件和硬件的接口ÿ…...
【pyspark学习从入门到精通14】MLlib_1
目录 包的概览 加载和转换数据 在前文中,我们学习了如何为建模准备数据。在本文中,我们将实际使用这些知识,使用 PySpark 的 MLlib 包构建一个分类模型。 MLlib 代表机器学习库。尽管 MLlib 现在处于维护模式,即它不再积极开发…...
C++全局构造和初始化
片段摘自程序员的自我修养—链接、装载与库.pdf 11.4 程序在进入main之前,需要对全局对象进行构造初始化。 glibc全局对象进行构造初始化 gibc启动程序时会经过.init段,退出程序时会经过.finit段。这两个段中的代码最终拼接成_init()和_finit(),这两个…...
安全见闻-泷羽sec课程笔记
编程语言 C语言:一种通用的、面向过程的编程语言,广泛应用于系统软件和嵌入式开发。 C:在C语言基础上发展而来,支持面向对象编程,常用于尊戏开发、高性能计算等领域。 Java:一种广泛使用的面问对象编程语言,具有跨平台…...
游戏引擎学习第17天
视频参考:https://www.bilibili.com/video/BV1LPUpYJEXE/ 回顾上一天的内容 1. 整体目标: 处理键盘输入:将键盘输入的处理逻辑从平台特定的代码中分离出来,放入更独立的函数中以便管理。优化消息循环:确保消息循环能够有效处理 …...
【FFmpeg】FFmpeg 内存结构 ③ ( AVPacket 函数简介 | av_packet_ref 函数 | av_packet_clone 函数 )
文章目录 一、av_packet_ref 函数1、函数原型2、函数源码分析3、函数使用代码示例 二、av_packet_clone 函数1、函数原型2、函数源码分析 FFmpeg 4.0 版本源码地址 : GitHub : https://github.com/FFmpeg/FFmpeg/tree/release/4.0GitCode : https://gitcode.com/gh_mirrors/ff…...
【学习笔记】量化概述
Quantize量化概念与技术细节 题外话,在七八年前,一些关于表征的研究,会去做表征的压缩,比如二进制嵌入这种事情,其实做得很简单,无非是找个阈值,然后将浮点数划归为零一值,现在的Qu…...
同步互斥相关习题10道 附详解
PV操作 2016 某系统允许最多10个进程同时读文件F,当同时读文件F的进程不满10个时,欲读该文件的其他文件可立即读,当已有10个进程在读文件F时读,其他欲读文件F的进程必须等待,直至有进程读完后退出方可去读 在实现管…...
【Python · PyTorch】卷积神经网络 CNN(LeNet-5网络)
【Python PyTorch】卷积神经网络 CNN(LeNet-5网络) 1. LeNet-5网络※ LeNet-5网络结构 2. 读取数据2.1 Torchvision读取数据2.2 MNIST & FashionMNIST 下载解包读取数据 2. Mnist※ 训练 LeNet5 预测分类 3. EMnist※ 训练 LeNet5 预测分类 4. Fash…...
Git 拉取指定分支创建项目
一 背景 因为项目过大,只需要部分分支的代码即可。 二 实现 方法一:使用 --single-branch 参数 git clone 支持只拉取指定分支,而不是整个库的所有分支: git clone --branch <branch_name> --single-branch <reposi…...
CF862B Mahmoud and Ehab and the bipartiteness(二分图的性质)
思路:一个二分图是由两个集合组成的,同一个集合中的节点间不能连边,所以一个二分图最多有cnt[1]*cnt[2]条边,题目给出一个树的n-1条边,要我们添加最多的边数使他成为二分图,添加的边数就是cnt[1]*cnt[2]-n1…...
React Native 全栈开发实战班 :数据管理与状态之React Hooks 基础
在 React Native 应用中,数据管理与状态管理是构建复杂用户界面的关键。React 提供了多种工具和模式来处理数据流和状态管理,包括 React Hooks、Context API 以及第三方状态管理库(如 Redux)。本章节将详细介绍 React Hooks 的基础…...
传奇996_22——自动挂机
登录钩子函数中执行 callscript(actor, "../QuestDiary/主界面基础按钮/主界面基础按钮QM", "基础按钮QM")基础按钮QM执行了已下代码 #IF Equal <$CLIENTFLAG> 1 #ACT goto PC端面板加载#IF Equal <$CLIENTFLAG> 2 #ACT goto 移动端面板加载…...
faiss 提供了多种索引类型
faiss 多种索引类型 在 faiss 中,IndexFlatL2 是一个简单的基于 L2 距离(欧几里得距离)进行索引的索引类型,但实际上,faiss 提供了多种索引类型,支持不同的度量方式和性能优化,您可以根据需求选…...
比rsync更强大的文件同步工具rclone
背景 多个复制,拷贝,同步文件场景,最大规模的是每次几千万规模的小文件需要从云上对象存储中拉取到本地。其他的诸如定期数据备份,单次性数据备份。 rsync是单线程的,开源的mrsync是多线程的,但适用范围没…...
《业务流程--穿越从概念到实践的丛林》读后感一:什么是业务流程
1.1 流程和业务流程概念辨析 业务流程建模标准(BPMN)对于业务流程的定义:一个业务流程由为了配合一个组织性或技术环境而一系列活动组成。这些活动共同实现一个业务目标。 业务流程再造最有名的倡导者托马斯.H.达文波特对于流程和业务流程的定义:流程是一组结构化且可度量的…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
使用 uv 工具快速部署并管理 vLLM 推理环境
uv:现代 Python 项目管理的高效助手 uv:Rust 驱动的 Python 包管理新时代 在部署大语言模型(LLM)推理服务时,vLLM 是一个备受关注的方案,具备高吞吐、低延迟和对 OpenAI API 的良好兼容性。为了提高部署效…...
