数据库查询表结构和数据量以及占用空间
数据库查询表结构和数据量以及占用空间
数据库查询表结构
mysql
SELECT COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_LENGTH 长度, IS_NULLABLE 是否为空, COLUMN_DEFAULT 默认值, COLUMN_COMMENT 备注
FROM INFORMATION_SCHEMA.COLUMNS
where
table_schema ='YOUR_SCHEMA_NAME'
达梦数据库查询表结构
SELECTt.table_name AS "表名",tc.comments AS "表注释",c.column_name AS "字段名",c.data_type AS "数据类型",c.data_length AS "长度",c.nullable AS "是否为空",c.data_default AS "默认值",cc.comments AS "字段注释"
FROM(SELECT DISTINCT table_name FROM user_tables) tJOINuser_tab_columns c ON t.table_name = c.table_nameLEFT JOINuser_col_comments cc ON c.table_name = cc.table_name AND c.column_name = cc.column_nameLEFT JOINuser_tab_comments tc ON t.table_name = tc.table_name
group by t.table_name,tc.comments,c.column_name,c.data_type,c.data_length,c.nullable,c.data_default,cc.comments
pgsql
SELECTA.attnum AS "序号",C.relname AS "表名",CAST ( obj_description ( relfilenode, 'pg_class' ) AS VARCHAR ) AS "表名描述",A.attname AS "字段名",A.attnotnull as 是否为空,
-- -IF(A.attnotnull='f','是','否') AS '必填',concat_ws ( '', T.typname, SUBSTRING ( format_type ( A.atttypid, A.atttypmod ) FROM '\(.*\)' ) ) AS "数据类型",d.description AS "注释"
FROMpg_class C,pg_attribute A,pg_type T,pg_description d
WHERE C.relname='table_name'
AND A.attnum > 0 AND A.attrelid = C.oidAND A.atttypid = T.oidAND d.objoid = A.attrelidAND d.objsubid = A.attnum
ORDER BYC.relname DESC,A.attnum ASC;
如果少表,看下是不是表没有注释,使用
SELECTA.attnum AS "序号",C.relname AS "表名",CAST ( obj_description ( relfilenode, 'pg_class' ) AS VARCHAR ) AS "表名描述",A.attname AS "字段名",A.attnotnull as 是否为空,
-- -IF(A.attnotnull='f','是','否') AS '必填',concat_ws ( '', T.typname, SUBSTRING ( format_type ( A.atttypid, A.atttypmod ) FROM '\(.*\)' ) ) AS "数据类型"
FROMpg_class C,pg_attribute A,pg_type T
WHERE C.relname in('flyway_schema_history','kafka_send_info','registration_district','send_book_log','send_mobile_msg_log')AND A.attnum > 0AND A.attrelid = C.oidAND A.atttypid = T.oid
ORDER BYC.relname DESC,A.attnum ASC;
sqlserver
SELECT t.name AS TableName,c.name AS ColumnName,ty.name AS DataType,c.max_length AS MaxLength,c.precision AS Precision,c.scale AS Scale,c.is_nullable AS IsNullable,ic.is_identity AS IsIdentityFROM sys.tables tINNER JOIN sys.columns c ON t.object_id = c.object_idLEFT JOIN sys.types ty ON c.system_type_id = ty.system_type_idLEFT JOIN sys.identity_columns ic ON c.object_id = ic.object_id AND c.column_id = ic.column_idORDER BY t.name, c.column_id;
数据库导出数据量以及占用空间
mysql数据库查询占用空间
SELECTtable_schema,table_name,CONCAT(ROUND(data_length / 1024 / 1024, 2), 'MB') AS data_length_MB,CONCAT(ROUND(index_length / 1024 / 1024, 2), 'MB') AS index_length_MB
FROMinformation_schema.tables
WHEREtable_schema = 'your_database_name'
ORDER BYtable_name;
达梦数据库查询数据量
SELECT B.OWNER, B.TABLE_NAME, TABLE_ROWCOUNT(B.OWNER, B.TABLE_NAME) "TABLE_ROWS"
FROM (SELECT A.OWNER, A.TABLE_NAMEFROM ALL_TABLES AWHERE A.TABLE_NAME NOT LIKE 'CTI%'AND A.TABLE_NAME NOT LIKE 'SREF_CON_TAB%'AND A.TABLE_NAME NOT LIKE 'BM%') B
ORDER BY 3 DESC, 1, 2;
达梦数据库查询占用空间
SELECT a.tablespace_name "表空间名称",total / (1024 * 1024) "表空间大小(M)",free / (1024 * 1024) "表空间剩余大小(M)",(total - free) / (1024 * 1024 ) "表空间使用大小(M)",total / (1024 * 1024 * 1024) "表空间大小(G)",free / (1024 * 1024 * 1024) "表空间剩余大小(G)",(total - free) / (1024 * 1024 * 1024) "表空间使用大小(G)",round((total - free) / total, 4) * 100 "使用率 %"
FROM (SELECT tablespace_name, SUM(bytes) freeFROM dba_free_spaceGROUP BY tablespace_name) a,(SELECT tablespace_name, SUM(bytes) totalFROM dba_data_filesGROUP BY tablespace_name) b
WHERE a.tablespace_name = b.tablespace_name;
sqlserver数据库数据量以及占用空间磁盘空间
SELECTt.NAME AS TableName,p.rows AS RowCounts,SUM(a.total_pages) * 8 / 1024 AS TotalSpaceMB,SUM(a.used_pages) * 8 / 1024 AS UsedSpaceMB,(SUM(a.total_pages) - SUM(a.used_pages)) * 8 / 1024 AS UnusedSpaceMB
FROMsys.tables t
INNER JOIN sys.indexes i ON t.OBJECT_ID = i.object_id
INNER JOINsys.partitions p ON i.object_id = p.OBJECT_ID AND i.index_id = p.index_id
INNER JOINsys.allocation_units a ON p.partition_id = a.container_id
WHEREt.NAME NOT LIKE 'dt%'AND t.is_ms_shipped = 0AND i.OBJECT_ID > 255
GROUP BYt.NAME, p.Rows
ORDER BYTotalSpaceMB DESC;
相关文章:
数据库查询表结构和数据量以及占用空间
数据库查询表结构和数据量以及占用空间 数据库查询表结构 mysql SELECT COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_LENGTH 长度, IS_NULLABLE 是否为空, COLUMN_DEFAULT 默认值, COLUMN_COMMENT 备注 FROM INFORMATION_SC…...

android 性能分析工具(03)Android Studio Profiler及常见性能图表解读
说明:主要解读Android Studio Profiler 和 常见性能图表。 Android Studio的Profiler工具是一套功能强大的性能分析工具集,它可以帮助开发者实时监控和分析应用的性能,包括CPU使用率、内存使用、网络活动和能耗等多个方面。以下是对Android …...

vscode 执行 vue 命令无效/禁止运行
在cmd使用命令可以创建vue项目但是在vscode上面使用命令却不行 一、问题描述 在 cmd 中已确认vue、node、npm命令可以识别运行,但是在 vscode 编辑器中 vue 命令被禁止,详细报错为:vue : 无法加载文件 D:\Software\nodejs\node_global\vue.…...
C++语言系列-STL容器和算法
C语言系列-STL容器 容器类 本文将对C语言中的标准模板库STL容器进行简单介绍,重点在于如何使用。 容器类 STL中的容器包括以下类别: vector: 动态数组,底层基于数组来实现,在容量不足的时候能够自动进行扩容。list: 链表stack: …...

【Web前端】Promise的使用
Promise是异步编程的核心概念之一。代表一个可能尚未完成的操作,并提供了一种机制来处理该操作最终的成功或失败。具体来说,Promise是由异步函数返回的对象,能够指示该操作当前所处的状态。 当Promise被创建时,它会处于“待定”&a…...

TDK推出第二代用于汽车安全应用的6轴IMU
近日,据外媒报道,TDK株式会社推出用于汽车安全应用的第二代6轴 IMU,即为TDK InvenSense SmartAutomotive MEMS传感器系列增加了IAM-20685HP和IAM-20689,为决策算法提供可靠的运动数据,并实时准确地检测车辆动态。这对于…...

免费S3客户端工具大赏
首发地址(欢迎大家访问):S3免费客户端工具大赏 1. S3 GUI GitHub地址:https://github.com/aminalaee/s3gui 简介:S3 GUI 是一款基于 Flutter 构建的免费开源 S3 桌面客户端,支持桌面、移动和网络平台。 特…...

前端访问后端实现跨域
背景:前端在抖音里做了一个插件然后访问我们的后端。显然在抖音访问其他域名肯定会跨域。 解决办法: 1、使用比较简单的jsonp JSONP 优点:JSONP 是通过动态创建 <script> 标签的方式加载外部数据,属于跨域数据请求的一种…...

TCP和UDP通信基础
目录 1. 套接字 (Socket) 2. 基于TCP通信的流程 服务器端 客户端 1. TCP通信API 1.1 创建套接字描述符socket 1.2 绑定IP和端口号bind 1.3 设置监听状态 listen 1.4 接受连接请求 accept 1.5 发送数据 send 1.6 接收数据 recv 2. TCP服务器代码示例 代码解释&…...
微服务中的技术使用与搭配:如何选择合适的工具构建高效的微服务架构
一、微服务架构中的关键技术 微服务架构涉及的技术非常广泛,涵盖了开发、部署、监控、安全等各个方面。以下是微服务架构中常用的一些技术及其作用: 1. 服务注册与发现 微服务架构的一个重要特性是各个服务是独立部署的,因此它们的地址&am…...

找出字符串第一个匹配项的下标
找出字符串第一个匹配项的下标 题目描述: 题解思路: 图上所示,利用字符滑动,如果匹配就字符开始移动;如果不匹配成功,则停止移动,并回到字符串刚开始匹配的字符下标前一个,为下一次…...

面向FWA市场!移远通信高性能5G-A模组RG650V-NA通过北美两大重要运营商认证
近日,全球领先的物联网整体解决方案供应商移远通信宣布,其旗下符合3GPP R17标准的新一代5G-A模组RG650V-NA成功通过了北美两家重要运营商认证。凭借高速度、大容量、低延迟、高可靠等优势,该模组可满足CPE、家庭/企业网关、移动热点、高清视频…...

Matlab实现北方苍鹰优化算法优化随机森林算法模型 (NGO-RF)(附源码)
目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1内容介绍 北方苍鹰优化算法(Northern Goshawk Optimization, NGO)是一种新颖的群智能优化算法,灵感源自北方苍鹰捕食时的策略。该算法通过模拟苍鹰的搜寻、接近和捕捉猎物的行为模式&am…...

搭建环境 配置编译运行 mpi-test-suite
1,编译安装 ucx 下载源码: $ git clone https://github.com/openucx/ucx.git $ git checkout v1.17.0 运行auto工具: $ ./autogen.sh $ ./autogen.sh 指所以运行两次是因为有时候第一次会失败,原因未查。 配置 ucx $ m…...

夜神模拟器启动报错:虚拟机启动失败 请进行修复 关闭hyper-v
不是关闭hyper-v的问题。 点那个没用。 解决办法: 我电脑win11(win10 win11都一样 )去安全中心-设备安全性 把内存完整性关了。 这还不够。 在右上角找系统信息 我发现VT显示没开 于是我去BIOS中开启VT 这个VT怎么开很简单。就是你F2 F1…...

投资策略规划最优决策分析
目录 一、投资策略规划问题详细 二、存在最优投资策略:每年都将所有钱投入到单一投资产品中 (一)状态转移方程 (二)初始条件与最优策略 (三)证明最优策略总是将所有钱投入到单一投资产品中…...

一篇保姆式虚拟机安装ubantu教程
前言: 本文将介绍在VMware安装ubantu,会的人可以试试上一篇介绍centos/ubantu安装docker环境,不同环境安装docker。一篇保姆式centos/unbantu安装docker 官网下载iso:Ubuntu 18.04.6 LTS (Bionic Beaver) 本次使用的版本是: 一&…...

缓冲区的奥秘:解析数据交错的魔法
目录 一、理解缓存区的好处 (一)直观性的理解 (二)缓存区的好处 二、经典案例分析体会 (一)文件读写流(File I/O Buffering) BufferedOutputStream 和 BufferedWriter 可以加快…...
CentOS 7.9 搭建本地Yum源
yum(Yellow Dog Updater,Modified)是一个在Fedora、Centos、RedHat中的Shell前端软件包管理器。基于RPM包管理,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖关系,并且一次安装所有依赖的软件…...

【Python】爬虫实战:高效爬取电影网站信息指南(涵盖了诸多学习内容)
本期目录 1 爬取思路 2 爬虫过程 2.1 网址 2.2 查看网页代码 3 爬取数据 3.1 导入包 3.2 爬取代码 01 爬取思路 \*- 第一步,获取页面内容\*- 第二步:解析并获取单个项目链接 \*- 第三步:获取子页面内容 \*- 第四步:解析…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...