当前位置: 首页 > news >正文

PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)

AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型“seal_recognition”。

官方地址:https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md

下面开始在本地使用PaddleX:

一、安装Python:

        推荐使用conda(可选)。

       Python版本:3.8.19(推荐版本)。

二、安装CUDA

        无论运行pytorch、tensflow还是paddlepaddle等深度学习框架,均推荐在GPU上进行推理。若要使用GPU进行推理,请在安装CUDA前提前更新好本机的显卡驱动。

        CUDA版本:11.8(推荐)

        CUDA参考地址:https://developer.nvidia.com/cuda-11-8-0-download-archive

三、安装PaddlePaddle

        既然我们想使用PaddlePaddle深度学习框架旗下的Pipeline,那肯定要提前安装好PaddlePaddle深度学习框架。

        PaddlePaddle版本:3.0.0-beta2

        PaddlePaddle参考地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台

至此,我们的基础环境已经安装完成,接下来就可以开始进行使用Pipeline了。

四、获取PaddleX

        PaddleX是什么?引用官方介绍:

PaddleX 3.0 是基于飞桨框架构建的低代码开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多款主流硬件,助力AI 开发者进行产业实践。

模型丰富一键调用:将覆盖文本图像智能分析、OCR、目标检测、时序预测等多个关键领域的 200+ 飞桨模型整合为 19 条模型产线,通过极简的 Python API 一键调用,快速体验模型效果。同时支持 20+ 单功能模块,方便开发者进行模型组合使用。

         官方地址:GitHub - PaddlePaddle/PaddleX: All-in-One Development Tool based on PaddlePaddle(飞桨低代码开发工具)

         简单来说,就是PaddlePaddle研发出来的一套开箱即用产品的底座,安装了PaddleX后,就可以通过几行命令来完成不同的任务,比如几行命令完成目标检测,几行命令完成文字识别等。

        安装PaddleX的几种方式:

一、Wheel包安装模式:

        若你只是希望快速完成模型的推理和集成,那么推荐您使用更便捷更轻量的Wheel包安装模式。快速安装轻量级的Wheel包之后,您即可基于PaddleX支持的所有模型进行推理,并能直接集成进您的项目中。

        

        pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl

二、插件安装模式:

        若您使用PaddleX的应用场景为二次开发 (例如重新训练模型、微调模型、自定义模型结构、自定义推理代码等),那么推荐您使用功能更加强大的插件安装模式。

安装您需要的PaddleX插件之后,您不仅同样能够对插件支持的模型进行推理与集成,还可以对其进行模型训练等二次开发更高级的操作。

       

        git clone https://github.com/PaddlePaddle/PaddleX.git
        cd PaddleX
        pip install -e .
        paddlex --install PaddleXXX  # 例如PaddleOCR

五、基于PaddleX安装第一个插件:PaddleOCR

paddlex --install PaddleOCR

六、几行代码完成快速推理(调用文心一言大模型、默认不可修改,需要Access_token,按需付费。 若无需大语言模型,看查看第七条推理方式):

````from paddlex import create_pipelinepipeline = create_pipeline(pipeline="PP-ChatOCRv3-doc",llm_name="ernie-3.5",llm_params={"api_type": "qianfan", "ak": "", "sk": ""} # 使用千帆接口,请填入您的ak与sk,否则无法调用大模型# llm_params={"api_type": "aistudio", "access_token": ""} # 或者使用AIStudio接口,请填入您的access_token,否则无法调用大模型)visual_result, visual_info = pipeline.visual_predict("https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/doc_images/practical_tutorial/PP-ChatOCRv3_doc_seal/test.png")for res in visual_result:res.save_to_img("./output")res.save_to_html('./output')res.save_to_xlsx('./output')vector = pipeline.build_vector(visual_info=visual_info)chat_result = pipeline.chat(key_list=["印章名称"],visual_info=visual_info,vector=vector,)chat_result.print()````

七、几行代码完成快速推理(无需大预言模型,支持本地化部署):

 ````from paddlex import create_pipelinepipeline = create_pipeline(pipeline="seal_recognition")output = pipeline.predict("./test_images/1387.jpg")for res in output:res.print() ## 打印预测的结构化输出res.save_to_img("./output_images/") ## 保存可视化结果````

八、查看结果

写在最后:下一章节,完成印章识别“seal_recognition”模型的微调与训练。

相关文章:

PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)

AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型“seal_recognition”。 官方地址:https://github.com/PaddlePaddle/PaddleX/blob/relea…...

Vue3 + Vite 项目引入 Typescript

文章目录 一、TypeScript简介二、TypeScript 开发环境搭建三、编译方式1. 自动编译单个文件2. 自动编译整个项目 四、配置文件1. compilerOptions基本选项严格模式相关选项(启用 strict 后自动包含这些)模块与导入相关选项 2. include 和 excludeinclude…...

微信小程序实战篇-分类页面制作

一、项目背景与目标 在微信小程序开发中,分类页面是一个常见且重要的功能模块。它能够帮助用户快速定位和浏览不同类别的商品或信息,提升用户体验和操作效率。今天,我们将深入探讨如何制作一个实用的微信小程序分类页面,先来看一下…...

第三十七章 如何清理docker 日志

如何清理docker 日志 目标 掌握docker 日志设置掌握docker日志的清理办法背景 在现代软件开发和部署环境中,Docker 容器技术因其轻量级、可移植性和高效资源利用的特点,已成为许多企业和开发团队的首选。Docker 容器在运行过程中会产生大量的日志信息,这些日志对于监控容器…...

二刷代码随想录第七天

454. 四数相加 II 先用map记录前两个数的和num1 num2的值出现了多少次再在后两个数组里找0 - (num1 num2),找到后就累加map中的次数 class Solution { public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3…...

1.tree of thought (使用LangChain解决4x4数独问题)

本教程将介绍如何使用LangChain库和chatglm API来解决一个4x4的数独问题。我们将通过以下步骤实现这一目标&#xff1a; 初始化chatglm 的聊天模型。定义数独问题和解决方案。创建一个自定义的检查器来验证每一步的思考。使用ToTChain来运行整个思考过程。 1. 初始化chatglm4…...

网络基础(4)IP协议

经过之前的学习对传输协议的学习&#xff0c;对于传输协议从系统底层到应用层对于socket套接字的学习已经有了一套完整的理论。 对于网络的层状结构&#xff0c;现在已经学习到了应用层和传输层: 在之前的学习中&#xff0c;通信的双方都只考虑了双方的传输层的东西&#xff0…...

124. 二叉树中的最大路径和【 力扣(LeetCode) 】

文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 124. 二叉树中的最大路径和 一、题目描述 二叉树中的 路径 被定义为一条节点序列&#xff0c;序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径…...

echarts:简单实现默认显示两柱子折线,点击按钮后显示新的柱子

问&#xff1a; 用echarts实现&#xff1a;默认显示两柱子折线&#xff0c;点击“税率”按钮&#xff0c;显示税率柱子&#xff0c;之前的两柱子折线消失 回答&#xff1a; <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8…...

视频里的音频怎么提取出来成单独文件?音频提取照着这些方法做

在数字时代&#xff0c;视频与音频的分离与重组已成为日常需求之一。无论是出于制作背景音乐、保存讲座内容&#xff0c;还是编辑播客素材&#xff0c;提取视频中的音频并将其保存为单独文件都显得尤为重要。视频里的音频怎么提取出来成单独文件&#xff1f;本文将详细介绍几种…...

Excel——宏教程(精简版)

一、宏的简介 1、什么是宏&#xff1f; Excel宏是一种自动化工具&#xff0c;它允许用户录制一系列操作并将其转换为VBA(Visual Basic for Applications)代码。这样&#xff0c;用户可以在需要时执行这些操作&#xff0c;以自动化Excel任务。 2、宏的优点 我们可以利用宏来…...

C++中的std::tuple和std::pair

在C标准库中&#xff0c;std::tuple和std::pair是两种极具实用性的数据结构&#xff0c;它们都具备存储多个元素的功能&#xff0c;但各自有其独特的适用环境和特性。本文旨在深入探讨这两者之间的区别&#xff0c;并阐述在不同应用场景下应如何合理选择使用。 一、基本概念 s…...

引力搜索算法

引力搜索算法过程&#xff0c;包括了初始化、适应度评估、质量计算、加速度计算、更新速度和位置的一些步骤。 import numpy as np import random as rd from math import exp, sqrt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotli…...

【时间之外】IT人求职和创业应知【35】-RTE三进宫

目录 新闻一&#xff1a;京东工业发布11.11战报&#xff0c;多项倍增数据体现工业经济信心提升 新闻二&#xff1a;阿里云100万核算力支撑天猫双11&#xff0c;弹性计算规模刷新纪录 新闻三&#xff1a;声网CEO赵斌&#xff1a;RTE将成为生成式AI时代AI Infra的关键部分 认知…...

Linux的目录结构

/ ├── bin # Binary - 存放用户可以直接使用的基本二进制可执行文件 ├── sbin # System Binaries - 存放系统管理员专用的二进制可执行文件 ├── usr # Unix System Resources - 存放用户使用的软件和库文件 │ ├── bin # Binary - 用户级应用程序…...

python: generator IDAL and DAL using sql server 2019

其它数据库也是一样的思维方式 create IDAL # encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 许可信息查看&#xff1a;言語成了邀功盡責的功臣&#xff0c;還需要行爲每日來值班嗎 # 描述&#xff1a; # Author : geovindu,Geovin Du 涂聚文. # IDE : P…...

命令执行简单

前言&#xff1a;小迪安全2022第一节反弹shell&#xff0c;小迪用的是两台都是云服务器&#xff0c;没有服务器可以在自己的主机上搭建也是可以的&#xff0c;主机上搭两个网站 思路&#xff1a;生成一个木马文件&#xff0c;下载到本机&#xff0c;然后利用本机上传到目标主机…...

【一句话经验】亚马逊云EC2 ubuntu24.04.1开启ROOT登录Permission denied (publickey)

按照常规的方法SSH登录会一直报错&#xff1a; Permission denied (publickey) 因为亚马逊云的默认配置不是在/etc/ssh/sshd_config&#xff0c;而是在引入的文件里了&#xff0c;所以在instance控制台输入这行命令来解除登录限制&#xff1a; sudo sed -i s/^PasswordAuthe…...

百度智能云千帆大模型平台引领企业创新增长

本文整理自百度世界大会 2024——「智能跃迁 产业加速」论坛的同名演讲。 更多大会演讲内容&#xff0c;请访问&#xff1a; https://baiduworld.baidu.com 首先&#xff0c;跟大家分享一张图&#xff0c;这个是我们目前大模型应用落地的场景分布。可以看到&#xff0c;大模型…...

【Linux】深入理解GCC/G++编译流程及库文件管理

目录 1.背景知识 2.gcc/g如何完成编译 (1) 预处理&#xff08;进行宏替换&#xff09; (2) 编译&#xff08;生成汇编&#xff09; (3) 汇编&#xff08;生成机器可识别代码&#xff09; (4) 链接&#xff08;生成可执行文件或库文件&#xff09; (5) 总结 (6) 函数库 …...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...