PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)
AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型“seal_recognition”。

官方地址:https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md
下面开始在本地使用PaddleX:
一、安装Python:
推荐使用conda(可选)。
Python版本:3.8.19(推荐版本)。
二、安装CUDA
无论运行pytorch、tensflow还是paddlepaddle等深度学习框架,均推荐在GPU上进行推理。若要使用GPU进行推理,请在安装CUDA前提前更新好本机的显卡驱动。
CUDA版本:11.8(推荐)
CUDA参考地址:https://developer.nvidia.com/cuda-11-8-0-download-archive
三、安装PaddlePaddle
既然我们想使用PaddlePaddle深度学习框架旗下的Pipeline,那肯定要提前安装好PaddlePaddle深度学习框架。
PaddlePaddle版本:3.0.0-beta2
PaddlePaddle参考地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台
至此,我们的基础环境已经安装完成,接下来就可以开始进行使用Pipeline了。
四、获取PaddleX
PaddleX是什么?引用官方介绍:
PaddleX 3.0 是基于飞桨框架构建的低代码开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多款主流硬件,助力AI 开发者进行产业实践。
模型丰富一键调用:将覆盖文本图像智能分析、OCR、目标检测、时序预测等多个关键领域的 200+ 飞桨模型整合为 19 条模型产线,通过极简的 Python API 一键调用,快速体验模型效果。同时支持 20+ 单功能模块,方便开发者进行模型组合使用。
官方地址:GitHub - PaddlePaddle/PaddleX: All-in-One Development Tool based on PaddlePaddle(飞桨低代码开发工具)
简单来说,就是PaddlePaddle研发出来的一套开箱即用产品的底座,安装了PaddleX后,就可以通过几行命令来完成不同的任务,比如几行命令完成目标检测,几行命令完成文字识别等。

安装PaddleX的几种方式:
一、Wheel包安装模式:
若你只是希望快速完成模型的推理和集成,那么推荐您使用更便捷、更轻量的Wheel包安装模式。快速安装轻量级的Wheel包之后,您即可基于PaddleX支持的所有模型进行推理,并能直接集成进您的项目中。
pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl
二、插件安装模式:
若您使用PaddleX的应用场景为二次开发 (例如重新训练模型、微调模型、自定义模型结构、自定义推理代码等),那么推荐您使用功能更加强大的插件安装模式。
安装您需要的PaddleX插件之后,您不仅同样能够对插件支持的模型进行推理与集成,还可以对其进行模型训练等二次开发更高级的操作。
git clone https://github.com/PaddlePaddle/PaddleX.git
cd PaddleX
pip install -e .
paddlex --install PaddleXXX # 例如PaddleOCR
五、基于PaddleX安装第一个插件:PaddleOCR
paddlex --install PaddleOCR
六、几行代码完成快速推理(调用文心一言大模型、默认不可修改,需要Access_token,按需付费。 若无需大语言模型,看查看第七条推理方式):
````from paddlex import create_pipelinepipeline = create_pipeline(pipeline="PP-ChatOCRv3-doc",llm_name="ernie-3.5",llm_params={"api_type": "qianfan", "ak": "", "sk": ""} # 使用千帆接口,请填入您的ak与sk,否则无法调用大模型# llm_params={"api_type": "aistudio", "access_token": ""} # 或者使用AIStudio接口,请填入您的access_token,否则无法调用大模型)visual_result, visual_info = pipeline.visual_predict("https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/doc_images/practical_tutorial/PP-ChatOCRv3_doc_seal/test.png")for res in visual_result:res.save_to_img("./output")res.save_to_html('./output')res.save_to_xlsx('./output')vector = pipeline.build_vector(visual_info=visual_info)chat_result = pipeline.chat(key_list=["印章名称"],visual_info=visual_info,vector=vector,)chat_result.print()````
七、几行代码完成快速推理(无需大预言模型,支持本地化部署):
````from paddlex import create_pipelinepipeline = create_pipeline(pipeline="seal_recognition")output = pipeline.predict("./test_images/1387.jpg")for res in output:res.print() ## 打印预测的结构化输出res.save_to_img("./output_images/") ## 保存可视化结果````
八、查看结果

写在最后:下一章节,完成印章识别“seal_recognition”模型的微调与训练。
相关文章:
PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)
AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型“seal_recognition”。 官方地址:https://github.com/PaddlePaddle/PaddleX/blob/relea…...
Vue3 + Vite 项目引入 Typescript
文章目录 一、TypeScript简介二、TypeScript 开发环境搭建三、编译方式1. 自动编译单个文件2. 自动编译整个项目 四、配置文件1. compilerOptions基本选项严格模式相关选项(启用 strict 后自动包含这些)模块与导入相关选项 2. include 和 excludeinclude…...
微信小程序实战篇-分类页面制作
一、项目背景与目标 在微信小程序开发中,分类页面是一个常见且重要的功能模块。它能够帮助用户快速定位和浏览不同类别的商品或信息,提升用户体验和操作效率。今天,我们将深入探讨如何制作一个实用的微信小程序分类页面,先来看一下…...
第三十七章 如何清理docker 日志
如何清理docker 日志 目标 掌握docker 日志设置掌握docker日志的清理办法背景 在现代软件开发和部署环境中,Docker 容器技术因其轻量级、可移植性和高效资源利用的特点,已成为许多企业和开发团队的首选。Docker 容器在运行过程中会产生大量的日志信息,这些日志对于监控容器…...
二刷代码随想录第七天
454. 四数相加 II 先用map记录前两个数的和num1 num2的值出现了多少次再在后两个数组里找0 - (num1 num2),找到后就累加map中的次数 class Solution { public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3…...
1.tree of thought (使用LangChain解决4x4数独问题)
本教程将介绍如何使用LangChain库和chatglm API来解决一个4x4的数独问题。我们将通过以下步骤实现这一目标: 初始化chatglm 的聊天模型。定义数独问题和解决方案。创建一个自定义的检查器来验证每一步的思考。使用ToTChain来运行整个思考过程。 1. 初始化chatglm4…...
网络基础(4)IP协议
经过之前的学习对传输协议的学习,对于传输协议从系统底层到应用层对于socket套接字的学习已经有了一套完整的理论。 对于网络的层状结构,现在已经学习到了应用层和传输层: 在之前的学习中,通信的双方都只考虑了双方的传输层的东西࿰…...
124. 二叉树中的最大路径和【 力扣(LeetCode) 】
文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 124. 二叉树中的最大路径和 一、题目描述 二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径…...
echarts:简单实现默认显示两柱子折线,点击按钮后显示新的柱子
问: 用echarts实现:默认显示两柱子折线,点击“税率”按钮,显示税率柱子,之前的两柱子折线消失 回答: <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8…...
视频里的音频怎么提取出来成单独文件?音频提取照着这些方法做
在数字时代,视频与音频的分离与重组已成为日常需求之一。无论是出于制作背景音乐、保存讲座内容,还是编辑播客素材,提取视频中的音频并将其保存为单独文件都显得尤为重要。视频里的音频怎么提取出来成单独文件?本文将详细介绍几种…...
Excel——宏教程(精简版)
一、宏的简介 1、什么是宏? Excel宏是一种自动化工具,它允许用户录制一系列操作并将其转换为VBA(Visual Basic for Applications)代码。这样,用户可以在需要时执行这些操作,以自动化Excel任务。 2、宏的优点 我们可以利用宏来…...
C++中的std::tuple和std::pair
在C标准库中,std::tuple和std::pair是两种极具实用性的数据结构,它们都具备存储多个元素的功能,但各自有其独特的适用环境和特性。本文旨在深入探讨这两者之间的区别,并阐述在不同应用场景下应如何合理选择使用。 一、基本概念 s…...
引力搜索算法
引力搜索算法过程,包括了初始化、适应度评估、质量计算、加速度计算、更新速度和位置的一些步骤。 import numpy as np import random as rd from math import exp, sqrt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotli…...
【时间之外】IT人求职和创业应知【35】-RTE三进宫
目录 新闻一:京东工业发布11.11战报,多项倍增数据体现工业经济信心提升 新闻二:阿里云100万核算力支撑天猫双11,弹性计算规模刷新纪录 新闻三:声网CEO赵斌:RTE将成为生成式AI时代AI Infra的关键部分 认知…...
Linux的目录结构
/ ├── bin # Binary - 存放用户可以直接使用的基本二进制可执行文件 ├── sbin # System Binaries - 存放系统管理员专用的二进制可执行文件 ├── usr # Unix System Resources - 存放用户使用的软件和库文件 │ ├── bin # Binary - 用户级应用程序…...
python: generator IDAL and DAL using sql server 2019
其它数据库也是一样的思维方式 create IDAL # encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 许可信息查看:言語成了邀功盡責的功臣,還需要行爲每日來值班嗎 # 描述: # Author : geovindu,Geovin Du 涂聚文. # IDE : P…...
命令执行简单
前言:小迪安全2022第一节反弹shell,小迪用的是两台都是云服务器,没有服务器可以在自己的主机上搭建也是可以的,主机上搭两个网站 思路:生成一个木马文件,下载到本机,然后利用本机上传到目标主机…...
【一句话经验】亚马逊云EC2 ubuntu24.04.1开启ROOT登录Permission denied (publickey)
按照常规的方法SSH登录会一直报错: Permission denied (publickey) 因为亚马逊云的默认配置不是在/etc/ssh/sshd_config,而是在引入的文件里了,所以在instance控制台输入这行命令来解除登录限制: sudo sed -i s/^PasswordAuthe…...
百度智能云千帆大模型平台引领企业创新增长
本文整理自百度世界大会 2024——「智能跃迁 产业加速」论坛的同名演讲。 更多大会演讲内容,请访问: https://baiduworld.baidu.com 首先,跟大家分享一张图,这个是我们目前大模型应用落地的场景分布。可以看到,大模型…...
【Linux】深入理解GCC/G++编译流程及库文件管理
目录 1.背景知识 2.gcc/g如何完成编译 (1) 预处理(进行宏替换) (2) 编译(生成汇编) (3) 汇编(生成机器可识别代码) (4) 链接(生成可执行文件或库文件) (5) 总结 (6) 函数库 …...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
