【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境:
MATLAB 2022a
1、算法描述
北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北半球,特别是北美和欧亚大陆的森林地带。它们以其出色的猎食策略和高度的适应性闻名,而NGO算法正是通过模拟这种捕猎策略来实现优化目标。
在自然界中,北方苍鹰通过多种手段捕捉猎物,这些手段主要包括高空俯冲、低空巡航和突然袭击。它们在捕猎过程中表现出的敏锐观察、精确定位以及快速反应等特性,为优化算法提供了丰富的灵感源泉。NGO算法通过将这些自然行为转化为数学模型和计算规则,从而实现对复杂优化问题的有效求解。
NGO算法的基本思想是通过模拟北方苍鹰的捕猎行为来寻找问题的最优解。具体来说,该算法将搜索空间中的每一个可能解视为猎物,而算法中的个体(即苍鹰)则通过一系列的捕猎行为来不断逼近和捕获这些猎物,从而找到最优解。为了实现这一目标,NGO算法通常包括以下几个主要步骤:
初始化种群:首先,NGO算法会在搜索空间内随机生成一定数量的初始解,这些解对应于北方苍鹰的初始位置。每个解的位置表示一个潜在的解决方案,并通过适应度函数来评估其优劣。适应度函数的设计应根据具体问题的特性来确定,通常用于衡量解的优劣程度。
个体更新:在每一轮迭代过程中,北方苍鹰会根据捕猎策略调整自身的位置。这个过程可以看作是搜索空间中的一次移动,目的是逐步逼近最优解。具体的更新策略可以分为两类:局部搜索和全局搜索。局部搜索模拟苍鹰在发现猎物后的精确打击过程,而全局搜索则模拟苍鹰在大范围内寻找猎物的过程。
捕猎行为模拟:NGO算法通过一系列数学模型模拟苍鹰的捕猎行为,这些模型通常包括俯冲攻击、突然袭击和包围等策略。在俯冲攻击中,苍鹰从高空快速下降,以极高的速度和精度扑向猎物;在突然袭击中,苍鹰通过快速改变方向和速度,以出其不意的方式捕捉猎物;在包围策略中,多个苍鹰协同合作,从不同方向逼近猎物,最终实现围捕。
适应度评价:每个个体在更新位置后,需要通过适应度函数重新评估其优劣。这一步骤对于指导下一轮的搜索具有关键作用,因为它决定了哪些个体能够进入下一轮迭代,并在搜索空间中继续移动。适应度函数的选择和设计直接影响算法的收敛速度和精度。
更新种群:在每一轮迭代结束后,NGO算法根据适应度值选择最优的个体组成新的种群。这一过程类似于自然界中的“优胜劣汰”,通过保留适应度高的个体,逐步淘汰适应度低的个体,从而保证算法朝着最优解的方向进化。
终止条件:NGO算法的迭代过程会在满足某个终止条件时结束。常见的终止条件包括迭代次数达到预设值、适应度值达到预设阈值、种群适应度值变化小于某个阈值等。满足任意一个条件时,算法停止迭代,并输出当前最优解。
NGO算法具有许多显著的优点,首先,它通过模拟北方苍鹰的自然捕猎行为,使得算法具有很强的鲁棒性和适应性。其次,由于苍鹰的捕猎行为具有多样性和灵活性,NGO算法在处理复杂、多峰、非线性优化问题时表现出色。此外,NGO算法具有较强的全局搜索能力,能够有效避免陷入局部最优,从而提高求解精度。
然而,NGO算法也存在一些挑战和改进空间。首先,算法的性能依赖于适应度函数的设计和种群初始化的质量,如何合理设计适应度函数和优化初始化策略是一个关键问题。其次,尽管NGO算法具有较强的全局搜索能力,但在处理高维、复杂度极高的问题时,仍可能面临收敛速度较慢的问题。为了提高收敛速度,可以结合其他优化算法或引入自适应机制,进一步改进NGO算法的性能。
为了更好地理解NGO算法的工作原理,我们可以通过一个具体的优化问题来说明。假设我们要解决一个函数优化问题,目标是在给定的搜索空间内找到使目标函数值最小的点。首先,我们在搜索空间内随机生成一群初始解,每个解对应一个苍鹰的位置。接下来,根据适应度函数评估每个解的优劣,适应度值较高的解代表离最优解更近。
在每一轮迭代中,每只苍鹰根据捕猎策略调整自己的位置。假设某只苍鹰发现了一个适应度值较高的区域,它会模拟俯冲攻击,迅速逼近该区域;而其他苍鹰则可能进行全局搜索,寻找更好的解。通过不断地局部搜索和全局搜索,整个种群逐步逼近最优解。在达到终止条件后,算法输出当前最优解,即为问题的最佳解决方案。
综上所述,北方苍鹰优化算法是一种基于自然界捕猎行为的智能优化算法,通过模拟北方苍鹰的捕猎策略,实现对复杂优化问题的有效求解。该算法具有鲁棒性强、适应性好、全局搜索能力强等优点,但也存在一些需要进一步研究和改进的挑战。随着算法的不断发展和完善,NGO算法在实际应用中展现出广阔的前景。无论是在工程优化、经济调度、还是科学研究等领域,NGO算法都具有重要的应用价值和潜力。
2、仿真结果演示

3、关键代码展示
略
4、MATLAB 源码获取
点击下方原文链接获取
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线._matlan ngo函数-CSDN博客
https://blog.csdn.net/Koukesuki/article/details/139360735?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522aeafdd9f8d96d1e290410fe6dff5d405%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=aeafdd9f8d96d1e290410fe6dff5d405&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-139360735-null-null.nonecase&utm_term=218&spm=1018.2226.3001.4450
相关文章:
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境: MATLAB 2022a 1、算法描述 北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北…...
如何控制自己玩手机的时间?两台苹果手机帮助自律
对一些人来说,被智能手机“绑架”是一件心甘情愿的事,和它相处的一天中,不必面对现实的压力,它就像个“舒适区”。这是因为在使用手机的过程中,应用程序(尤其是游戏和社交媒体应用)会不断刺激大…...
【java-Neo4j 5开发入门篇】-最新Java开发Neo4j
系列文章目录 前言 上一篇文章讲解了Neo4j的基本使用,本篇文章对Java操作Neo4j进行入门级别的阐述,方便读者快速上手对Neo4j的开发。 一、开发环境与代码 1.docker 部署Neo4j #这里使用docker部署Neo4j,需要镜像加速的需要自行配置 docker run --name…...
Python的3D可视化库 - vedo (1)简介和模块功能概览
文章目录 1. vedo和它支持的功能简介1.1 安装vedo1.2 命令行接口1.3 导出3D文件1.4 文件格式转换 2. vedo模块功能概览2.1 绘制和渲染visual 管理可视化、对象及其属性的显示的基类plotter 3D渲染colors 定义和显示颜色dolfin FEniCS/Dolfin库的支持 2.2 图形数据管理mesh 多边…...
全面解析:HTML页面的加载全过程(一)--输入URL地址,与服务器建立连接
用户输入URL地址,与服务器建立连接 用户在浏览器地址栏输入一个URL 浏览器开始执行以下三步操作操作:url解析、DNS查询、TCP连接 第一步:URL解析 什么是URL? URL(Uniform Resource Locator,统一资源定位符)是互联网…...
elasticsearch的倒排索引是什么?
大家好,我是锋哥。今天分享关于【elasticsearch的倒排索引是什么?】面试题。希望对大家有帮助; elasticsearch的倒排索引是什么? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 倒排索引(Inverted Index&a…...
Ubuntu VNC Session启动chromium和firefox报错
问题描述 VNC客户端连接到Ubuntu Server后,启动chromium和firefox时报错: $ chromium [348564:348564:1117/102143.085649:ERROR:ozone_platform_x11.cc(244)] Missing X server or $DISPLAY [348564:348564:1117/102143.085732:ERROR:env.cc(258)] Th…...
【Tealscale + Headscale + 自建服务器】异地组网笔记
文章目录 效果为什么要用 Headscale云服务器安装 Headscale配置 config.yaml创建反向代理搭建管理 UI授权管理 UI添加互联设备参考 效果 首先是连接情况,双端都连接上自建的 Headscale, 手机使用移动流量,测试一下 ping 值 再试试进入游戏 可…...
C++ 编程基础(8)模版 | 8.2、函数模版
文章目录 一、函数模版1、声明与定义2、模版参数3、模板的实例化3.1、隐式实例化3.2、显示实例化 4、模版的特化5、注意事项6、总结 前言: C 函数模板是一种强大的特性,它允许程序员编写与类型无关的代码。通过使用模板,函数或类可以处理不同…...
Android Studio音频视频播放器课程设计
这个项目适合刚刚学习Android studio的初学者,实现音视频的基本播放功能,各项功能的页面都做的比较简单,特别适用于初学者,其特点在于本项目抛开了各种花里胡哨的制作,以最接近初学者的样式画面呈现,完全不…...
速盾:CDN是否支持屏蔽IP?
CDN(内容分发网络)是一种用于提高网站性能和可靠性的技术,通过将内容分发到距离终端用户更近的节点,减少了数据传输的延迟并提高了用户体验。在CDN中,屏蔽IP是一项重要的功能,可以帮助网站屏蔽无效或恶意请…...
机器学习—学习曲线
学习曲线是帮助理解学习算法如何工作的一种方法,作为它所拥有的经验的函数。 绘制一个符合二阶模型的学习曲线,多项式或二次函数,画出交叉验证错误Jcv,以及Jtrain训练错误,所以在这个曲线中,横轴将是Mtrai…...
在 macOS 和 Linux 中,波浪号 `~`的区别
文章目录 1、在 macOS 和 Linux 中,波浪号 ~macOS示例 Linux示例 区别总结其他注意事项示例macOSLinux 结论 2、root 用户的主目录通常是 /root解释示例切换用户使用 su 命令使用 sudo 命令 验证当前用户总结 1、在 macOS 和 Linux 中,波浪号 ~ 在 macO…...
【Java】实战:多数元素
一、题目描述 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入:nums [3,2,3] 输出&#x…...
一文解决Latex中的eps报错eps-converted-to.pdf not found: using draft setting.
在使用Vscode配的PDFLatex编译IEEE TII的Latex模板时,出现eps文件不能转换为pdf错误,看了几十篇方法都没用,自己研究了半天终于可以正常运行了。主要原因还是Settings.JSON中的PDFLatex模块缺少:"--shell-escape", 命令…...
计算光纤色散带来的相位移动 matlab
需要注意的地方 1.以下内容纯属个人理解,很有可能不准确,请大家仅做参考 2.光速不要直接用3e8 m/s,需要用精确的2.9979.... 3.光的频率无论在真空还是光纤(介质)都是不变的,是固有属性,但是波长lambdac/f在不同的介…...
国内docker pull拉取镜像的解决方法
访问网站,查找该网站上可用的镜像源,然后替换掉下面代码中的hub-mirror.c.163.com: docker pull hub-mirror.c.163.com/library/nginx:latest 另外,进入到镜像之后,可以使用下面的命令查看操作系统版本。 lsb_releas…...
“Kafka面试攻略:核心问题与高效回答”
1,生产者发送消息的原理 发送消息的过程中,涉及到两个线程,main线程和sender线程,main线程会创建一个双端队列,main线程向双端队列发送消息,sender线程从双端队列里拉取消息,发送给Kafka Broke…...
C++ 多线程std::thread以及条件变量和互斥量的使用
前言 本文章主要介绍C11语法中std::thread的使用,以及条件变量和互斥量的使用。 std::thread介绍 构造函数 std::thread 有4个构造函数 // 默认构造函,构造一个线程对象,在这个线程中不执行任何处理动作 thread() noexcept;// 移动构造函…...
新华三H3CNE网络工程师认证—子接口技术
子接口(subinterface)是通过协议和技术将一个物理接口(interface)虚拟出来的多个逻辑接口。在VLAN虚拟局域网中,通常是一个物理接口对应一个 VLAN。在多个 VLAN 的网络上,无法使用单台路由器的一个物理接口…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
