C++ 多线程std::thread以及条件变量和互斥量的使用
前言
- 本文章主要介绍C++11语法中std::thread的使用,以及条件变量和互斥量的使用。
std::thread介绍
构造函数
- std::thread 有4个构造函数
-
// 默认构造函,构造一个线程对象,在这个线程中不执行任何处理动作 thread() noexcept;// 移动构造函数。将 other 的线程所有权转移给新的thread 对象。之后 other 不再表示执行线程。 // 线程对象只可移动,不可复制 thread( thread&& other ) noexcept;// 创建线程对象,并在该线程中执行函数f中的业务逻辑,args是要传递给函数f的参数 template< class F, class... Args > explicit thread( F&& f, Args&&... args );// 使用=delete显示删除拷贝构造, 不允许线程对象之间的拷贝 thread( const thread& ) = delete;
- 通过以下代码演示下如何构造函数的使用
-
#include <iostream>#include <thread>#include <chrono>void threadFunc2() {std::cout << "enter threadFunc2" << std::endl;}void threadFunc3(int data) {std::cout << "enter threadFunc3, data: " << data << std::endl;}class CThread4 {public:void threadFunc4(const char * data) {std::cout << "enter threadFunc4, data: " << data << std::endl;}};void threadFunc5() {for (int i = 0; i < 5; i++) {std::cout << "enter threadFunc5" << std::endl;std::this_thread::sleep_for(std::chrono::seconds(1));}}int main() {// 默认构造std::thread th1;// 线程中执行函数std::thread th2(threadFunc2);th2.join();// 线程中执行带参函数std::thread th3(threadFunc3, 10010);th3.join();CThread4 ct4;// 线程中执行类成员函数std::thread th4(&CThread4::threadFunc4, &ct4, "hello world");th4.join();std::thread th5_1(threadFunc5);// 使用移动构造std::thread th5_2(std::move(th5_1));th5_2.join();// 执行lambda表达式std::thread th6([] {std::cout << "enter threadFunc6" << std::endl;});th6.join();system("pause");return 0;}
-
- 执行结果
-
enter threadFunc2enter threadFunc3, data: 10010enter threadFunc4, data: hello worldenter threadFunc5enter threadFunc5enter threadFunc5enter threadFunc5enter threadFunc5enter threadFunc6请按任意键继续. . .
-
成员函数
-
// 获取线程ID std::thread::id get_id() const noexcept; // 阻塞当前线程,直至调用join的子线程运行结束 void join(); // 将执行线程从线程对象中分离,允许独立执行。 void detach(); // 判断主线程和子线程的关联状态 bool joinable() const noexcept; // 如果 *this 仍然有一个关联的运行中的线程,则调用 std::terminate()。 // 否则,将 other 的状态赋给 *this 并将 other 设置为默认构造的状态。 thread& operator=( thread&& other ) noexcept;
- 通过代码看下如何使用成员函数
-
#include <iostream>#include <thread>#include <chrono>void threadFunc3(int data) {std::cout << "enter threadFunc3, data: " << data << std::endl;}void threadFunc4(int data) {std::cout << "start threadFunc4, data: " << data << std::endl;std::this_thread::sleep_for(std::chrono::seconds(2));std::cout << "end threadFunc4, data: " << data << std::endl;}void threadFunc5(int data) {std::cout << "start threadFunc5, data: " << data << std::endl;std::this_thread::sleep_for(std::chrono::seconds(2));std::cout << "end threadFunc5, data: " << data << std::endl;}int main() {{// 线程中执行带参函数std::thread th3(threadFunc3, 10010);std::cout << "th3 id: " << th3.get_id() << std::endl;// 此刻th3线程与主线程有关联std::cout << "th3 joinable: " << th3.joinable() << std::endl;th3.join();std::cout << "th3 id: " << th3.get_id() << std::endl;// 线程执行结束,此刻th3线程与主线程无关联std::cout << "th3 joinable: " << th3.joinable() << std::endl;}{std::thread th5(threadFunc5, 10050);// 如果不想在主线程中等待子线程,可以使用detach。// 这样即便主线程运行结束,子线程依旧会执行// 实际使用时不建议这样做th5.detach();}system("pause");return 0;}
-
- 执行结果
-
enter threadFunc3, data: 10010th3 id: 12820th3 joinable: 1th3 id: 0th3 joinable: 0start threadFunc5, data: 10050请按任意键继续. . . end threadFunc5, data: 10050
-
条件变量
- 条件变量是C++11提供的一种用于等待的同步机制,它能阻塞一个或多个线程,直到收到另外一个线程发出的通知或者超时时,才会唤醒当前阻塞的线程。
- C++11中的条件变量叫
condition_variable
,需要配合std::unique_lock<std::mutex>
使用。 - 先看以下一段代码
-
#include <iostream>#include <thread>#include <chrono>#include <mutex>#include <condition_variable>int g_cnt = 0;// 定义互斥量std::mutex g_mutex;// 定义条件变量std::condition_variable g_cond;void threadFunc1() {while (g_cnt != 50) {std::this_thread::sleep_for(std::chrono::milliseconds(1));}std::cout << "threadFunc1 g_cnt: " << g_cnt << std::endl;}void threadFunc2() {while (g_cnt < 100) {g_cnt++;std::this_thread::sleep_for(std::chrono::milliseconds(1));}}int main() {{std::thread th1(threadFunc1);std::thread th2(threadFunc2);th1.join();th2.join();std::cout << "g_cnt: " << g_cnt << std::endl;}system("pause");return 0;}
-
- 线程2对
g_cnt
进行递增操作,线程1在g_cnt
等于50时退出循环并打印结果。但这个流程有一个问题,比如线程1某次访问g_cnt时,值为49,下一次再访问时,值可能为50,也可能为51。如果g_cnt
值为51,那这个条件永远都不会满足,循环也就永远无法结束。并且线程1中,我们只想获取g_cnt
等于50这个状态,没必要每次都去访问,这也会耗费系统资源。 - 使用条件变量做以下修改
-
#include <iostream>#include <thread>#include <chrono>#include <mutex>#include <condition_variable>int g_cnt = 0;// 定义互斥量std::mutex g_mutex;// 定义条件变量std::condition_variable g_cond;bool g_flag = false;void threadFunc1() {std::unique_lock<std::mutex> lock(g_mutex);while (!g_flag) {// 阻塞等待,等待被唤醒g_cond.wait(lock);}std::cout << "threadFunc1 g_cnt: " << g_cnt << std::endl;}void threadFunc2() {while (g_cnt < 100) {g_cnt++;if (g_cnt == 50) {g_flag = true;// 唤醒阻塞的线程g_cond.notify_one();}std::this_thread::sleep_for(std::chrono::milliseconds(1));}}int main() {{std::thread th1(threadFunc1);std::thread th2(threadFunc2);th1.join();th2.join();std::cout << "g_cnt: " << g_cnt << std::endl;}system("pause");return 0;}
-
- 这样就可以保证线程1的条件肯定可以满足。
线程互斥
- 控制线程对共享资源的访问。比如写文件时,不能读文件,读文件时,不能写文件。
- C++11提供了4种互斥锁
std::mutex
:独占的互斥锁,不能递归使用。std::timed_mutex
:带超时的独占互斥锁,不能递归使用。在获取互斥锁资源时增加了超时等待功能。std::recursive_mutex
:递归互斥锁,不带超时功能。允许同一线程多次获得互斥锁。std::recursive_timed_mutex
:带超时的递归互斥锁。
- 分析以下这段代码的输出结果
-
#include <iostream>#include <thread>#include <chrono>#include <mutex>int g_cnt = 0;void threadFunc(int num) {for (int i = 0; i < num; i++) {g_cnt++;std::this_thread::sleep_for(std::chrono::milliseconds(1));}}int main() {{// 线程中执行带参函数std::thread th1(threadFunc, 100);std::thread th2(threadFunc, 100);th1.join();th2.join();std::cout << "g_cnt: " << g_cnt << std::endl;}system("pause");return 0;}
-
- 我们期望的
g_cnt
输出结果为200
,但实际上g_cnt
很大概率不是200
而是小于200
。这是由于没有对共享资源g_cnt
进行加锁保护,这会导致数据竞争。两个线程可能同时访问g_cnt
,导致某个线程的++
操作被另一个线程覆盖。 - 对上面代码做下修改,对共享资源
g_cnt
进行加锁保护。-
#include <iostream>#include <thread>#include <chrono>#include <mutex>int g_cnt = 0;// 定义互斥量std::mutex g_mutex;void threadFunc(int num) {for (int i = 0; i < num; i++) {// 加锁g_mutex.lock();g_cnt++;// 解锁g_mutex.unlock();std::this_thread::sleep_for(std::chrono::milliseconds(1));}}int main() {{// 线程中执行带参函数std::thread th1(threadFunc, 100);std::thread th2(threadFunc, 100);th1.join();th2.join();std::cout << "g_cnt: " << g_cnt << std::endl;}system("pause");return 0;}
-
- 加锁后,就可以保证
g_cnt
的结果为200。 - 上面代码有这样一种风险。如果加锁后,中途退出而忘记解锁,就会导致死锁现象。
-
void threadFunc(int num) {for (int i = 0; i < num; i++) {// 加锁g_mutex.lock();g_cnt++;if (i == 50) {break;}// 解锁g_mutex.unlock();std::this_thread::sleep_for(std::chrono::milliseconds(1));}}
-
- C++ 11 提供了一种模板类
std::lock_guard
,可以简化互斥锁的写法。调用构造时加锁,离开作用域时解锁。不用手动加解锁,大大提高了安全性。 - 实现代码如下。即便中途退出,也不会出现死锁现象。
-
void threadFunc(int num) {for (int i = 0; i < num; i++) {// 加锁std::lock_guard<std::mutex> lock(g_mutex);g_cnt++;if (i == 50) {break;}std::this_thread::sleep_for(std::chrono::milliseconds(1));}}
-
参考
- https://en.cppreference.com/w/cpp/thread/thread
相关文章:
C++ 多线程std::thread以及条件变量和互斥量的使用
前言 本文章主要介绍C11语法中std::thread的使用,以及条件变量和互斥量的使用。 std::thread介绍 构造函数 std::thread 有4个构造函数 // 默认构造函,构造一个线程对象,在这个线程中不执行任何处理动作 thread() noexcept;// 移动构造函…...

新华三H3CNE网络工程师认证—子接口技术
子接口(subinterface)是通过协议和技术将一个物理接口(interface)虚拟出来的多个逻辑接口。在VLAN虚拟局域网中,通常是一个物理接口对应一个 VLAN。在多个 VLAN 的网络上,无法使用单台路由器的一个物理接口…...

【MySQL】InnoDB内存结构
目录 InnoDB内存结构 主要组成 缓冲池 缓冲池的作用 缓冲池的结构 缓冲池中页与页之间连接方式分析 缓冲池如何组织数据 控制块初始化 页面初始化 缓冲池中页的管理 缓冲区淘汰策略 查看缓冲池信息 总结 变更缓冲区-Chang Buffer 变更缓冲区的作用 主要配置选项…...

基于大数据爬虫数据挖掘技术+Python的网络用户购物行为分析与可视化平台(源码+论文+PPT+部署文档教程等)
#1024程序员节|征文# 博主介绍:CSDN毕设辅导第一人、全网粉丝50W,csdn特邀作者、博客专家、腾讯云社区合作讲师、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老…...

蓝桥杯每日真题 - 第19天
题目:(费用报销) 题目描述(13届 C&C B组F题) 解题思路: 1. 问题抽象 本问题可以看作一个限制条件较多的优化问题,核心是如何在金额和时间约束下选择最优方案: 动态规划是理想…...
CentOS7.9.2009的yum更换vault地窖保险库过期源,epel的archive归档源 笔记241117
CentOS7.9.2009的yum更换vault地窖保险库过期源,epel的archive归档源 笔记241117 备份 /etc/yum.repos.d 文件夹 tempUri/etc/yum.repos.d ; sudo cp -a $tempUri $tempUri.$(date %0y%0m%0d%0H%0M%0Sns%0N).bak清空 /etc/yum.repos.d 文件夹 sudo rm -rf /etc…...

Spark SQL大数据分析快速上手-完全分布模式安装
【图书介绍】《Spark SQL大数据分析快速上手》-CSDN博客 《Spark SQL大数据分析快速上手》【摘要 书评 试读】- 京东图书 大数据与数据分析_夏天又到了的博客-CSDN博客 Hadoop完全分布式环境搭建步骤-CSDN博客,前置环境安装参看此博文 完全分布模式也叫集群模式。将Spark目…...

Java面试题2024-Java基础
Java基础 1、 Java语言有哪些特点 1、简单易学、有丰富的类库 2、面向对象(Java最重要的特性,让程序耦合度更低,内聚性更高) 3、与平台无关性(JVM是Java跨平台使用的根本) 4、可靠安全 5、支持多线程 2、…...
局域网协同办公软件,2024安全的协同办公软件推荐
在2024年,随着数字化转型的深入和远程工作需求的增加,协同办公软件已成为企业提升工作效率、优化沟通流程的重要工具。 以下是一些值得推荐的安全的协同办公软件: 钉钉 功能全面:钉钉是一款综合性极强的企业级协同软件ÿ…...
osg、osgearth简介及学习环境准备
一、osg简介(三维场景图渲染与调度引擎) OSG是Open Scene Graphic 的缩写,OSG于1997年诞生于以为滑翔机爱好者之手,Don burns 为了对滑翔机的飞行进行模拟,对openGL的库进行了封装,osg的雏形就这样诞生了&…...

nodejs基于微信小程序的云校园的设计与实现
摘 要 相比于传统的校园管理方式,智能化的管理方式可以大幅提高校园的管理效率,实现了云校园管理的标准化、制度化、程序化的管理,有效地防止了云校园信息的不规范管理,提高了信息的处理速度和精确度,能够及时、准确地…...

uni-app快速入门(十)--常用内置组件(下)
本文介绍uni-app的textarea多行文本框组件、web-view组件、image图片组件、switch开关组件、audio音频组件、video视频组件。 一、textarea多行文本框组件 textarea组件在HTML 中相信大家非常熟悉,组件的官方介绍见: textarea | uni-app官网uni-app,un…...
golang基础
在 Go 中字符串是不可变的,例如下面的代码编译时会报错: cannot assign to s[0] 但如果真的想要修改怎么办呢?下面的代码可以实现: var s string "hello" s [ 0 ] c s : "hello" c : [] b…...

Selenium + 数据驱动测试:从入门到实战!
引言 在软件测试中,测试数据的多样性和灵活性对测试覆盖率至关重要。而数据驱动测试(Data-Driven Testing)通过将测试逻辑与数据分离,极大地提高了测试用例的可维护性和可扩展性。本文将结合Selenium这一流行的测试工具࿰…...
LLaMA与ChatGLM选用比较
目录 1. 开发背景 2. 目标与应用 3. 训练数据 4. 模型架构与规模 5. 开源与社区支持 6. 对话能力 7. 微调与应用 8. 推理速度与资源消耗 总结 LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一…...

GPTZero:高效识别AI生成文本,保障学术诚信与内容原创性
产品描述 GPTZero 是一款先进的AI文本检测工具,专为识别由大型语言模型(如ChatGPT、GPT-4、Bard等)生成的文本而设计。它通过分析文本的复杂性和一致性,判断文本是否可能由人类编写。GPTZero 已经得到了超过100家媒体机构的报道&…...

C/C++ 优化,strlen 示例
目录 C/C optimization, the strlen examplehttps://hallowed-blinker-3ca.notion.site/C-C-optimization-the-strlen-example-108719425da080338d94c79add2bb372 揭开优化的神秘面纱... 让我们来谈谈 CPU 等等,SIMD 是什么? 为什么 strlen 是一个很…...

【动手学深度学习Pytorch】1. 线性回归代码
零实现 导入所需要的包: # %matplotlib inline import random import torch from d2l import torch as d2l import matplotlib.pyplot as plt import matplotlib import os构造人造数据集:假设w[2, -3.4],b4.2,存在随机噪音&…...
深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例
深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例 在PyTorch中,卷积层是构建卷积神经网络(CNNs)的基本单元,广泛用于处理图像和视频中的特征提取任务。通过卷积操作,网络可以有效地学习输入数…...

DataGear 5.2.0 发布,数据可视化分析平台
DataGear 企业版 1.3.0 已发布,欢迎体验! http://datagear.tech/pro/ DataGear 5.2.0 发布,图表插件支持定义依赖库、严重 BUG 修复、功能改进、安全增强,具体更新内容如下: 重构:各模块管理功能访问路径…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...