多模态大模型(4)--InstructBLIP
BLIP-2通过冻结的指令调优LLM以理解视觉输入,展示了在图像到文本生成中遵循指令的初步能力。然而,由于额外的视觉输入由于输入分布和任务多样性,构建通用视觉语言模型面临很大的挑战。因而,在视觉领域,指令调优技术仍未被充分探索。InstructBLIP(《InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning》),是由Salesforce Research与香港科技大学和新加坡南洋理工大学合作提出的多模态预训练模型。InstructBLIP基于预训练的BLIP-2模型,进行视觉指令微调,旨在构建一个通用的视觉语言模型,能够处理多种视觉语言任务。实验表明,在13个保留数据集上训练的InstructBLIP并分别测试,结果显示在全部的数据集上都取得了最先进的零样本性能,显著优于BLIP-2和更大的Flamingo模型。
主要贡献
● 对视觉语言指令调优进行了全面和系统的研究,证明了InstructBLIP在视觉语言零样本泛化方面的有效性。
● 提出了指令感知的视觉特征提取以及一种平衡采样策略,以同步数据集之间的学习进度。
● 开源了一系列使用两个LLM家族的InstructBLIP模型:1)FlanT5,一个从T5微调的编码器-解码器LLM;2)Vicuna,一个从LLaMA微调的仅解码器LLM。
微调中使用的相关数据集如下:

模型

InstructBLIP模型的工作流程可以概括为以下几个关键步骤:
- 预训练模型初始化:
○ InstructBLIP基于预训练的BLIP-2模型,该模型包含一个图像编码器、一个大型语言模型(LLM)和一个查询变换器(Q-Former)。这些组件共同构成了模型的核心架构。 - 指令感知的视觉特征提取:
○ InstructBLIP引入了一个指令感知的Q-Former,它不仅接收图像特征,还接收文本指令作为输入。这样,Q-Former可以根据给定的指令从图像编码器的输出中提取与任务相关的特征。 - 指令调优:
○ 在指令调优阶段,模型在13个保留数据集上进行微调,同时保持图像编码器和LLM冻结。这一过程使得模型能够学习如何根据自然语言指令执行特定的视觉语言任务。 - 平衡采样策略:
○ 为了处理不同数据集大小的差异,InstructBLIP采用了平衡采样策略,确保模型不会过度拟合小数据集或在大数据集上欠拟合。 - 零样本评估:
○ InstructBLIP在13个保留数据集上进行零样本评估,以测试模型在未见任务上的泛化能力。这包括在训练期间未见过的完整任务类别。 - 下游任务微调:
○ InstructBLIP还可以在特定的下游任务上进行微调,以进一步提高性能。由于图像编码器在指令调优期间保持冻结,这减少了可训练参数的数量,提高了微调效率。 - 多模态接口:
○ InstructBLIP通过统一的自然语言界面处理广泛的视觉语言任务,使其成为一个通用的视觉语言模型。
实验结果
在downstreat的数据集测试,InstructBLIP超过了以前的SOTA(state of the art)以及BLIP-2方法。

总结
InstructBLIP模型的核心创新在于其指令感知的视觉特征提取机制和指令调优策略,这使得模型能够灵活地适应不同的视觉语言任务,并在零样本设置下展现出强大的泛化能力。通过这种方式,InstructBLIP能够在多种视觉语言任务上实现更为先进的性能。
PS:附原文:https://arxiv.org/pdf/2305.06500,感兴趣读者可以深入阅读。
相关文章:
多模态大模型(4)--InstructBLIP
BLIP-2通过冻结的指令调优LLM以理解视觉输入,展示了在图像到文本生成中遵循指令的初步能力。然而,由于额外的视觉输入由于输入分布和任务多样性,构建通用视觉语言模型面临很大的挑战。因而,在视觉领域,指令调优技术仍未…...
【Linux】基于 Busybox 构建嵌入式 Linux(未完成)
嵌入式 Linux 1.需要 Toolchain 2.需要 Bootloader 3.需要嵌入式 Linux 基本组件: Linux kernelDTBRoot filesystem InitShellDaemonShared librariesConfiguration fileDevice nodeproc and sysKernel Module 基于 Busybox 构建 1.编译 Linux kernel 2.编译 …...
Unet++改进38:添加GLSA(2024最新改进方法)具有聚合和表示全局和局部空间特征的能力,这有利于分别定位大目标和小目标
本文内容:添加GLSA注意力机制 目录 论文简介 1.步骤一 2.步骤二 3.步骤三 4.步骤四 论文简介 基于变压器的模型已经被广泛证明是成功的计算机视觉任务,通过建模远程依赖关系和捕获全局表示。然而,它们往往被大模式的特征所主导,导致局部细节(例如边界和小物体)的丢失…...
c++中mystring运算符重载
#include <iostream> #include <cstring>using namespace std;class mystring {char* buf; public:mystring(); //构造函数mystring(const char * str); //构造函数mystring(const mystring& str); //深拷贝函数void show(); //输出函数void setmystr(const my…...
图像处理 - 色彩空间转换
色彩空间转换的含义与原理 色彩空间转换是指将一种颜色模型或表示方式中的颜色数据映射到另一种颜色模型中的过程。色彩空间(Color Space)本质上是一个三维坐标系统,每个点都表示图像中的某种颜色。在实际应用中,由于不同的色彩空…...
MariaDB面试题及参考答案
什么是 MariaDB? MariaDB 是一个开源的关系型数据库管理系统,它是 MySQL 数据库的一个分支。它的主要目的是存储和管理数据,采用了关系模型,数据存储在表中,表之间可以通过关联建立关系。 从起源来讲,Maria…...
PostgreSQL常用字符串函数与示例说明
文章目录 coalesce字符串位置(position strpos)字符串长度与大小写转换去掉空格(trim ltrim rtrim)字符串连接(concat)字符串替换简单替换(replace)替换指定位置长度(overlay)正则替换(regexp_replace) 字符串匹配字符串拆分split_part(拆分数组取指定位置的值)string_to_array…...
力扣第58题:最后一个单词的长度
力扣第58题是 最后一个单词的长度,具体要求是给定一个字符串,找到其最后一个单词的长度。 题目描述 输入:一个由字母和空格组成的字符串 s,可以包含大小写字母和若干空格。 输出:最后一个单词的长度。 注意…...
【Maven】Nexus几个仓库的介绍
在 Nexus 仓库管理器中,maven-central、maven-public、maven-releases 和 maven-snapshots 是常用的 Maven 仓库类型。每个仓库都有其特定的用途和功能。以下是对这些仓库的详细介绍: 1. maven-central 类型:代理仓库(Proxy Rep…...
SSH免密登陆
一、生成SSH密钥对 在客户端主机 ClientHost上,以 root用户身份生成SSH密钥对: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" # -t rsa:指定使用RSA算法 # -b 4096:指定密钥长度为4096位 # -C ""…...
【Linux】Namespace
一、概念 Linux Namespace 是 Linux 内核提供的一种特性,用于对系统资源进行隔离。通过 Namespace,不同的进程组可以拥有独立的系统资源视图,即使它们在同一台物理机器上运行。这种隔离机制使得容器技术成为可能,因为它允许在单个…...
SQLite 和 MySQL语法区别
SQLite 和 MySQL 在 SQL 语法上有一些差异,这些差异主要体现在数据类型、函数、表和索引的管理等方面。以下是一些主要的不同之处: 1. 数据类型 SQLite 支持的数据类型包括:TEXT, INTEGER, REAL, BLOB。动态类型系统,允许在插入…...
基于BERT的命名体识别(NER)
基于BERT的命名实体识别(NER) 目录 项目背景项目结构环境准备数据准备代码实现 5.1 数据预处理 (src/preprocess.py)5.2 模型训练 (src/train.py)5.3 模型评估 (src/evaluate.py)5.4 模型推理 (src/inference.py) 项目运行 6.1 一键运行脚本 (run.sh)6…...
华为云鸿蒙应用入门级开发者认证考试题库(理论题和实验题)
注意:考试链接地址:华为云鸿蒙应用入门级学习认证_华为云鸿蒙应用入门级开发者认证_华为云开发者学堂-华为云 当前认证打折之后是1元,之后原价700元,大家尽快考试!考试题库里面答案不一定全对,但是可以保证…...
SpringBoot+React养老院管理系统 附带详细运行指导视频
文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码1.入住合同文件上传2.添加和修改套餐的代码3.查看入住记录代码 一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBootReact框架开发的养老院管理系统。首先…...
使用element-plus el-table中使用el-image层级冲突table表格会覆盖预览的图片等问题
在日常开发项目中 使用element-plus 中表格中使用 el-image的点击图片出现图片预览 会出现以下问题 表格一行会覆盖预览的图片 鼠标滑过也会显示表格 el-image 的预览层级和表格的层级冲突导致的。 解决方法:有两种一种是直接使用样式穿透 第二种推荐方法 使用官网推…...
python读取Oracle库并生成API返回Json格式
一、安装必要的库 首先,确保已经安装了以下库: 有网模式 pip install flask pip install gevent pi install cx_Oracle离线模式: 下载地址:https://pypi.org/simple/flask/ # a. Flask Werkzeug-1.0.1-py2.py3-none-any.whl J…...
音视频入门基础:MPEG2-TS专题(5)——FFmpeg源码中,判断某文件是否为TS文件的实现
一、引言 通过FFmpeg命令: ./ffmpeg -i XXX.ts 可以判断出某个文件是否为TS文件: 所以FFmpeg是怎样判断出某个文件是否为TS文件呢?它内部其实是通过mpegts_probe函数来判断的。从《FFmpeg源码:av_probe_input_format3函数和AVI…...
每天10个vue面试题(九)
1、如何在组件中批量使用Vuex的getter属性? 使用mapGetters辅助函数, 利用对象展开运算符将getter混入computed 对象中computed:{ ...mapGetters([total,discountTotal]) } 2、vue2和vue3的区别? 双向数据绑定不同:vue2 的双向数据绑定…...
Jenkins的环境部署
day22 回顾 Jenkins 简介 官网Jenkins Jenkins Build great things at any scale The leading open source automation server, Jenkins provides hundreds of plugins to support building, deploying and automating any project. 用来构建一切 其实就是用Java写的一个项目…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
