当前位置: 首页 > news >正文

【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南

文章目录

    • PyTorch 全面解析
      • 2.1 PyTorch 的发展历程
      • 2.2 PyTorch 的核心特点
      • 2.3 PyTorch 的应用场景
    • TensorFlow 全面解析
      • 3.1 TensorFlow 的发展历程
      • 3.2 TensorFlow 的核心特点
      • 3.3 TensorFlow 的应用场景
    • Keras 全面解析
      • 4.1 Keras 的发展历程
      • 4.2 Keras 的核心特点
      • 4.3 Keras 的应用场景
    • PyTorch、TensorFlow 与 Keras 的对比分析
      • 综合对比表格
    • 实战教程:使用 PyTorch、TensorFlow 和 Keras 构建简单神经网络
      • 5.1 使用 PyTorch 构建神经网络
      • 5.2 使用 TensorFlow 构建神经网络
      • 5.3 使用 Keras 构建神经网络
    • 更多提效文章
    • 结论:选择最适合你的深度学习框架

在这里插入图片描述

在深度学习领域,框架的选择直接影响到项目的开发效率、模型的性能以及未来的扩展性。一个合适的深度学习框架不仅能够提升开发速度,还能让开发者更加专注于模型设计与优化,而不是底层实现细节。那么,PyTorch、TensorFlow 和 Keras 各自有哪些独特之处?在不同的应用场景下,它们又各自适合什么样的任务?本文将为你一一解答。

【人工智能】深入理解PyTorch:从0开始完整教程!全文注解

【人工智能】深入理解 TensorFlow:从0开始完整教程!打造你的AI模型之路

【人工智能】深入理解 Keras:从0开始完整教程!掌握深度学习的核心技术

PyTorch 全面解析

2.1 PyTorch 的发展历程

PyTorch 由 Facebook 在 2016 年推出,作为一个基于 Python 的深度学习框架,它迅速凭借其动态计算图和易用性获得了广泛的关注和支持。近年来,PyTorch 在学术界和工业界的应用越来越广泛,成为深度学习研究的重要工具。
在这里插入图片描述

2.2 PyTorch 的核心特点

  • 动态计算图:PyTorch 采用动态计算图(Dynamic Computation Graph),即每次前向传播都会重新生成计算图,灵活度高,调试方便。
  • Pythonic 设计:与 Python 无缝集成,代码风格简洁易读,适合快速原型开发。
  • 强大的社区支持:拥有丰富的社区资源和第三方库,持续更新和优化。
  • 多平台支持:支持 CPU、GPU 等多种硬件平台,且易于部署到生产环境。

2.3 PyTorch 的应用场景

  • 研究与开发:由于其灵活性和易用性,PyTorch 成为学术界研究的首选框架。
  • 计算机视觉:广泛应用于图像分类、目标检测、图像生成等任务。
  • 自然语言处理:在文本分类、机器翻译、问答系统等方面表现出色。
  • 生成对抗网络(GAN):PyTorch 提供了丰富的 API,便于构建复杂的生成模型。

TensorFlow 全面解析

3.1 TensorFlow 的发展历程

TensorFlow 由 Google 于 2015 年发布,是目前最受欢迎的深度学习框架之一。作为一个全面的机器学习平台,TensorFlow 提供了丰富的工具和库,覆盖了从研究到生产的各个环节。

体验最新GPT系列模型、支持自定义助手、文件上传等功能:ChatMoss & ChatGPT-AI中文版

在这里插入图片描述

3.2 TensorFlow 的核心特点

  • 静态计算图:TensorFlow 最初采用静态计算图(Static Computation Graph),优化性能,便于部署和生产环境使用。
  • 丰富的生态系统:包括 TensorBoard、TensorFlow Serving、TensorFlow Lite 等,支持可视化、模型部署和移动端应用。
  • 高性能:针对大规模分布式计算进行了优化,支持大规模数据和模型的训练。
  • 跨平台支持:支持多种硬件设备,如 CPU、GPU、TPU 等,且易于在不同平台之间迁移。

3.3 TensorFlow 的应用场景

  • 大规模机器学习:适用于需要分布式训练和高性能计算的任务。
  • 生产环境部署:丰富的部署工具使得 TensorFlow 成为企业级应用的理想选择。
  • 移动与嵌入式设备:TensorFlow Lite 支持在移动设备和嵌入式系统上高效运行模型。
  • 强化学习:TensorFlow 提供的工具和库支持复杂的强化学习模型开发。

Keras 全面解析

4.1 Keras 的发展历程

Keras 最初由 François Chollet 于 2015 年开发,作为一个高级神经网络 API,旨在简化深度学习模型的构建和训练。后来,Keras 被集成到 TensorFlow 中,成为其官方高层 API,进一步增强了其易用性和功能。
在这里插入图片描述

4.2 Keras 的核心特点

  • 用户友好:API 简洁直观,适合快速构建和实验深度学习模型。
  • 模块化:支持多种神经网络层、优化器、损失函数等组件的灵活组合。
  • 多后端支持:虽然现已集成到 TensorFlow 中,但 Keras 原本支持多种后端(如 Theano、CNTK),提供了更大的灵活性。
  • 快速原型开发:适用于需要快速迭代和验证的项目,减少开发时间。

4.3 Keras 的应用场景

  • 初学者学习:由于其简单易用,Keras 成为深度学习入门的理想选择。
  • 快速原型设计:适用于需要快速构建和测试模型的研发环境。
  • 中小型项目:在需要快速部署和迭代的项目中,Keras 提供了高效的解决方案。
  • 研究与教育:广泛用于学术研究和教学,帮助学生和研究人员快速实现深度学习概念。

PyTorch、TensorFlow 与 Keras 的对比分析

在选择合适的深度学习框架时,了解各个框架的优缺点以及适用场景非常重要。下面,我们将从易用性、性能与效率、社区支持与生态系统、以及可扩展性与灵活性四个方面,对 PyTorch、TensorFlow 和 Keras 进行详细对比。

体验最新GPT系列模型、支持自定义助手、文件上传等功能:ChatMoss & ChatGPT-AI中文版

综合对比表格

为了更直观地比较 PyTorch、TensorFlow 和 Keras 的各项特性,我们特意制作了以下对比表格:

特性PyTorchTensorFlowKeras
易用性高度易用,Pythonic 设计TensorFlow 2.x 提升了易用性,适中极高,适合初学者和快速原型开发
计算图类型动态计算图早期静态计算图,TensorFlow 2.x 支持动态图依赖后端,主要通过 TensorFlow 实现动态图支持
性能与效率优秀,适合研发阶段优秀,适合生产环境和大规模训练依赖后端性能,适用于中小型项目
社区支持快速增长,尤其在学术界受到欢迎庞大且成熟,拥有丰富的生态系统活跃且资源丰富,作为 TensorFlow 的官方 API
生态系统丰富的第三方库和工具丰富,包括 TensorBoard、TensorFlow Serving 等依赖 TensorFlow 的生态系统
可扩展性极高,适合自定义复杂模型极高,支持大规模分布式训练和复杂部署良好,通过 TensorFlow 扩展
部署支持支持多平台部署,逐步完善中强大,支持 CPU、GPU、TPU 及移动设备和嵌入式系统依赖 TensorFlow 的部署工具
学习曲线平缓,适合有一定编程基础的用户较陡,特别是 TensorFlow 1.x,但 TensorFlow 2.x 改善了用户体验非常平缓,适合初学者
适用场景研究与开发、计算机视觉、自然语言处理、GAN大规模机器学习、生产环境部署、移动与嵌入式设备、强化学习初学者学习、快速原型设计、中小型项目、教育

表格说明:上述对比基于框架的主要特性和应用场景,具体选择需结合项目需求和个人偏好。

实战教程:使用 PyTorch、TensorFlow 和 Keras 构建简单神经网络

为了更直观地了解三大框架的使用方式,下面我们将通过一个简单的手写数字识别(MNIST)任务,演示如何使用 PyTorch、TensorFlow 和 Keras 构建和训练一个基本的神经网络模型。📚
在这里插入图片描述

5.1 使用 PyTorch 构建神经网络

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)# 定义模型
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.flatten = nn.Flatten()self.fc1 = nn.Linear(28*28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)x = self.relu(self.fc1(x))x = self.fc2(x)return xmodel = SimpleNN()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(5):for images, labels in train_loader:outputs = model(images)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item():.4f}')

5.2 使用 TensorFlow 构建神经网络

import tensorflow as tf# 加载和预处理数据
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 定义模型
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dense(10)
])# 编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)

5.3 使用 Keras 构建神经网络

from tensorflow import keras
from tensorflow.keras import layers# 加载和预处理数据
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255# 定义模型
model = keras.Sequential([layers.Flatten(input_shape=(28, 28)),layers.Dense(128, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)

通过以上简单的示例,我们可以看到,虽然三大框架在具体实现上有所不同,但总体流程相似,都包括数据预处理、模型定义、编译、训练和评估等步骤。选择哪一个框架,取决于你的具体需求和个人偏好。🤖

更多提效文章

【IDER、PyCharm】免费AI编程工具完整教程:ChatGPT Free - Support Key call AI GPT-o1 Claude3.5

【OpenAI】获取OpenAI API KEY的两种方式,开发者必看全方面教程!

【Cursor】揭秘Cursor:如何免费无限使用这款AI编程神器?

结论:选择最适合你的深度学习框架

PyTorch、TensorFlow 和 Keras 各有千秋,选择适合自己的深度学习框架需要综合考虑项目需求、开发团队的技术栈以及未来的扩展计划。

  • 如果你注重研发阶段的灵活性和易用性, PyTorch 是一个非常优秀的选择,尤其适合进行前沿研究和复杂模型的开发。
  • 如果你需要在生产环境中部署大规模的机器学习模型, TensorFlow 拥有强大的性能优化和丰富的部署工具,能够满足企业级应用的需求。
  • 如果你是深度学习的初学者或需要快速原型开发, Keras 提供了简洁易用的接口,能够帮助你快速上手并实现基本的深度学习任务。

无论你选择哪一个框架,掌握深度学习的核心概念和算法才是最根本的。希望本文的全面解析与对比能够帮助你做出明智的选择,开启你的深度学习之旅!🌟

相关文章:

【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南

文章目录 PyTorch 全面解析2.1 PyTorch 的发展历程2.2 PyTorch 的核心特点2.3 PyTorch 的应用场景 TensorFlow 全面解析3.1 TensorFlow 的发展历程3.2 TensorFlow 的核心特点3.3 TensorFlow 的应用场景 Keras 全面解析4.1 Keras 的发展历程4.2 Keras 的核心特点4.3 Keras 的应用…...

【第八课】Rust中的函数与方法

目录 前言 函数指针 函数当作另一个函数的参数 函数当作另一个函数的返回值 闭包 方法 关联函数 总结 前言 在前面几课中,我们都或多或少的接触到了rust中的函数,rust中的函数和其他语言的并没有什么不同,简单的语法不在这篇文章中赘…...

c语言学习25二维数组

1 二维数组 1.1二维数组认识 二维数组本质是一个数组。 举例: int a[10][3] 数组名 a; 元素个数10; 数组元素类型:int [3]; 数组元素下标:0~9 这是一个数组,有十个元素,每个元…...

如何理解Lua 使用虚拟堆栈

虚拟堆栈的基本概念 Lua使用虚拟堆栈来实现Lua和C(或其他宿主语言)之间的交互。这个虚拟堆栈是一个数据结构,用于存储Lua的值,如数字、字符串、表、函数等。它在Lua状态机(lua_State)内部维护,为…...

【倍数问题——同余系】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e5 10, M 1e3 10; int maxx[M][4]; void consider(int r, int x) {if(x > maxx[r][1]){maxx[r][3] maxx[r][2];maxx[r][2] maxx[r][1];maxx[r][1] x;}else if(x > maxx[r][2]){maxx[…...

「San」监听DOM变化的方法

在 San框架 中监听组件内部字体大小并调整宽度&#xff0c;可以结合 自定义事件 或 数据绑定 来实现动态调整。San 框架没有直接的监听 DOM 尺寸变化的内置方法&#xff0c;但可以通过以下步骤实现&#xff1a; 方法一&#xff1a;使用 ResizeObserver 监听字体变化 在组件的 …...

如何选择服务器

如何选择服务器 选择服务器时应考虑以下几个关键因素&#xff1a; 性能需求。根据网站的预期流量和负载情况&#xff0c;选择合适的处理器、内存和存储容量。考虑网站是否需要处理大量动态内容或高分辨率媒体文件。 可扩展性。选择一个可以轻松扩展的服务器架构&#xff0c;以便…...

嵌入式驱动面试总结

操作系统&#xff1a; 中断的处理流程&#xff0c;中断处理需要注意些什么 软中断和硬中断区别 linux驱动用过那些锁&#xff0c;信号量&#xff0c;互斥锁 自旋锁和互斥锁的区别 二值信号量和互斥信号量有什么区别 进程锁怎么实现的&#xff0c;说一下流程&#xff1b; …...

Uniapp 简单配置鸿蒙

Uniapp 简单配置鸿蒙 前言下载并配置鸿蒙IDEHbuilder X 配置基本的信息生成相关证书登录官网获取证书IDE配置证书添加调试设备可能出现的问题前言 如今鸿蒙的盛起,作为多端开发的代表也是开始兼容鸿蒙应用的开发,接下来我将介绍如何在uniapp中配置鸿蒙。 注意:hbuilder X的…...

线程池的实现与应用

一、线程池 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用&#xff0c…...

基于Java Springboot单位考勤系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 数据…...

近源渗透|HID ATTACK从0到1

前言 对于“近源渗透”这一术语&#xff0c;相信大家已经不再感到陌生。它涉及通过伪装、社会工程学等手段&#xff0c;实地侵入企业办公区域&#xff0c;利用内部潜在的攻击面——例如Wi-Fi网络、RFID门禁、暴露的有线网口、USB接口等——获取关键信息&#xff0c;并以隐蔽的…...

【linux】插入新硬盘如何配置:格式化、分区、自动挂载(Ubuntu)

文章目录 具体方法GPT分区表&#xff08;GUID Partition Table&#xff09;&#xff08;建议都用这种分区方法&#xff09;MBR分区表方法&#xff08;最大支持2TB分区&#xff09;&#xff08;Master Boot Record&#xff09; 附加&#xff1a;如何查看硬盘的型号另外&#xff…...

YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py

block.py ultralytics\nn\modules\block.py 目录 block.py 1.所需的库和模块 2.class DFL(nn.Module): 3.class Proto(nn.Module): 4.class HGStem(nn.Module): 5.class HGBlock(nn.Module): 6.class SPP(nn.Module): 7.class SPPF(nn.Module): 8.class C1(nn.M…...

代码随想录算法训练营第五十三天|Day53 图论

字符串接龙 https://www.programmercarl.com/kamacoder/0110.%E5%AD%97%E7%AC%A6%E4%B8%B2%E6%8E%A5%E9%BE%99.html 思路 #include <stdio.h> #include <stdlib.h> #include <string.h>#define MAX 1000 // 假设最大字符串数 #define WORD_LENGTH 100 // 假…...

LeetCode:203.移除链表元素

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;203.移除链表元素 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.…...

知识见闻 - 数学: 均方根 Root Mean Square

What is Root Mean Square (RMS)? 在统计学上&#xff0c;均方根&#xff08;RMS&#xff09;是均方的平方根&#xff0c;而均方是一组数值的平方的算术平均数。均方根也称为二次均值&#xff0c;是指数为 2 的广义均值的一种特例。均方根也被定义为基于一个周期内瞬时值的平方…...

机器硬件调优

grub参数 ipv6.disable1 ipv6.autoconf0 intel_pstatedisable nohzoff idlepoll intel_idle.max_cstate0 processor.max_cstate0 mceignore_ce nmi_watchdog0 transparent_hugepagenever pcie_aspm.policyperformance audit0 irqaffinity0 nosoftlockup grub2-mkconfig -o /bo…...

如何更改手机GPS定位

你是否曾想过更改手机GPS位置以保护隐私、玩游戏或访问受地理限制的内容&#xff1f;接下来我将向你展示如何使用 MagFone Location Changer 更改手机GPS 位置&#xff01;无论是在玩Pokmon GO游戏、发布社媒贴子&#xff0c;这种方法都快速、简单且有效。 第一步&#xff1a;下…...

HarmonyOS(57) UI性能优化

性能优化是APP开发绕不过的话题&#xff0c;那么在HarmonyOS开发过程中怎么进行性能优化呢&#xff1f;今天就来总结下相关知识点。 UI性能优化 1、避免在组件的生命周期内执行高耗时操作2、合理使用ResourceManager3、优先使用Builder方法代替自定义组件4、参考资料 1、避免在…...

Mysql的加锁情况详解

最近在复习mysql的知识点&#xff0c;像索引、优化、主从复制这些很容易就激活了脑海里尘封的知识&#xff0c;但是在mysql锁的这一块真的是忘的一干二净&#xff0c;一点映像都没有&#xff0c;感觉也有点太难理解了&#xff0c;但是还是想把这块给啃下来&#xff0c;于是想通…...

hive3.1.2编译spark3安装包

此安装包是《去破解站长》在公司真实生产环境所使用的安装包。 引言&#xff1a;Hive引擎包括&#xff1a;默认MR、tez、sparkDownload:www.qupojie.com 1、Hive on Spark 1、Hive onSpark&#xff1a;Hive既作为存储元数据又负责SQL的解析优化&#xff0c;语法是HQL语法&…...

网络安全,文明上网(1)享科技,提素养

前言 在这个信息化飞速发展的时代&#xff0c;科技的快速进步极大地丰富了我们的生活&#xff0c;并为我们提供了无限的可能性。然而&#xff0c;随着网络世界的不断扩张&#xff0c;增强我们的网络素养成为了一个迫切需要解决的问题。 与科技同行&#xff0c;培育网络素养 技术…...

ESP32 烧录问题

ESP32 烧录问题 1.无法连接 Connecting......................................A fatal error occurred: Failed to connect to ESP32: No serial data received.这个表示通过串口连接esp32失败&#xff0c;可能存在多种原因&#xff0c;比如串口选择错误。 所选串口不是连接…...

CnosDB 实时流式计算:优化时序数据处理与降采样解决方案

在处理时序数据时&#xff0c;数据写入周期通常与数据采集设备的频率相关&#xff0c;有时每秒钟就需要处理大量的数据点。长时间处理如此多的数据会导致存储问题。一个有效的解决方案是使用流式计算&#xff0c;将原始数据进行降采样。 流式计算在时序数据库中指对实时数据流…...

ApiChain 从迭代测试用例到项目回归测试 核心使用教程

项目地址&#xff1a;ApiChain 项目主页 环境变量 环境变量是在特定的开发环境&#xff08;开发、测试、uat等&#xff09;下&#xff0c;保存的一份数据集&#xff0c;环境变量是发送网络请求或者执行单测的一个重要数据源。环境变量根据作用范围可以分为全局环境变量、项目…...

数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall

数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&#xff0c;持续增加中。 贵在坚持&#xff01; 数据样例项目地址&#xff1a; * 相关项目 1&#xff09;数据集可视化项…...

django从入门到实战(四)——模型与数据库

1. 模型的定义与数据迁移 1.1 模型的定义 在 Django 中&#xff0c;模型是一个 Python 类&#xff0c;用于定义数据库中的数据结构。每个模型类对应数据库中的一张表&#xff0c;类的属性对应表中的字段。 示例&#xff1a; from django.db import modelsclass Blog(models…...

LeetCode:1008. 前序遍历构造二叉搜索树

目录 题目描述: 代码: 第一种: 第二种: 第三种:分治法 题目描述: 给定一个整数数组&#xff0c;它表示BST(即 二叉搜索树 )的 先序遍历 &#xff0c;构造树并返回其根。 保证 对于给定的测试用例&#xff0c;总是有可能找到具有给定需求的二叉搜索树。 二叉搜索树 是一棵…...

gdb - 调试工具 - 入门 (一)

GDB&#xff08;GNU Debugger&#xff09;是GNU项目调试器的缩写&#xff0c;它是Linux下一个强大的C/C&#xff08;以及其他语言如Fortran&#xff09;程序调试工具。以下是对GDB的详细解释&#xff1a; 一、GDB的功能 GDB允许开发者对程序执行进行深入控制&#xff0c;可以…...

呼家楼做网站的公司哪家好/北京排名seo

1.福利 | 飞桨中国行——生产制造专场 https://ai.baidu.com/support/news?actiondetail&id2704&hmsrAI&hmplZ 2.利器 | 数字化石油的开采利器&#xff1a;智能图像识别系统 https://ai.baidu.com/support/news?actiondetail&id2707&hmsrAI&hmplZ…...

深圳市专注网站建设/搜索推广

智器Ten3从一上市就采用了最新的Android4.0系统&#xff0c;随着时间的推移官方已经更新至了最新的Android4.0.3版本。在上一页笔者已经简要的介绍了一下系统升级的步骤&#xff0c;可以看出智器平板的升级操作还是非常简单的。Ten3采用最新的Android4.0.3系统谷歌最新的Androi…...

山东企业网站建设费用/如何创建一个自己的网站

原文&#xff1a; http://matt33.com/2015/05/26/the-basis-of-storm/ 本文是参考网上的博客以及一些书籍根据自己的一些理解整理得到的&#xff0c;主要是为了更好地理解storm的内部机制&#xff08;当时使用Storm的版本是0.9.3&#xff09;。 基础 Storm的Topology模型 一…...

免费做网站方案/如何自己做一个网站

声明是告诉编译器有这么个变量&#xff0c;但并不实现。定义就是实现这个变量&#xff0c;真正在内存(堆或栈中)为此变量分配空间它们的本质区别是&#xff1a;是否分配内存空间&#xff0c;定义需要分配空间&#xff0c;声明不需要分配空间。int i;声明一个i&#xff0c;告诉编…...

福州营销型网站建设价格/营销推广方案案例

后期静态绑定工作原理是存储了在上一个“非转发调用”&#xff08;non-forwarding call&#xff09;的类名。当进行静态方法调用时&#xff0c;该类名即为明确指定的那个&#xff08;通常在 :: 运算符左侧部分&#xff09;&#xff1b;当进行非静态方法调用时&#xff0c;即为该…...

关于网站开发的评审时间安排/成人营销管理培训班

mysql 命令行需要用户名和密码的地方有这样使用 命令 -u用户名 -p密码  &#xff0d;&#xff0d;&#xff0d;&#xff0d;&#xff0d; -u -p 后面不跟空格...