OpenCV和Qt坐标系不一致问题
“ OpenCV和QT坐标系导致绘图精度下降问题。”
OpenCV和Qt常用的坐标系都是笛卡尔坐标系,但是细微处有些不同。
01
—
OpenCV坐标系
OpenCV是图像处理库,是以图像像素为一个坐标位置,即一个像素对应一个坐标,所以其坐标系也叫图像坐标系。如下所示。其中坐标(1,1)表示红色方块的位置。

02
—
Qt坐标系
Qt是用于创建图形用户界面(GUI)应用程序,是可以处理亚像素坐标的。坐标(0,0)和(1,0)之间,还有很多坐标,比如(0.5,0)。具体如下所示。

03
—
两种绘制多边形对比
比如多边形的点集坐标是{(0,0), (1,0), (2,1), (1,2), (0,1)},分别使用Qt和OpenCV去绘制。绿色的轮廓是OpenCV,红色的是Qt,两者相差较大。当然这是精确到像素级别了,如果绘制的轮廓很大,不放大看是感受不到差别的。

使用具体的代码绘制对比如下。
opencv代码
const cv::Point* ppt[1] = { contour.data() };int npt[] = { int(contour.size()) };cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(125,0,0)); 效果如下

Qt代码。
// 设置画笔并绘制多边形painter->setPen(pen);painter->setBrush(Qt::blue); // 不填充painter->drawPolygon(m_points); 
// 设置画笔并绘制多边形painter->setPen(pen);painter->setBrush(Qt::NoBrush); // 不填充painter->drawPolygon(m_points); 
可以看到QT绘制的轮廓相对于OpenCV整体往左上角偏移了一点点,轮廓范围也缩小了。
相关文章:
OpenCV和Qt坐标系不一致问题
“ OpenCV和QT坐标系导致绘图精度下降问题。” OpenCV和Qt常用的坐标系都是笛卡尔坐标系,但是细微处有些不同。 01 — OpenCV坐标系 OpenCV是图像处理库,是以图像像素为一个坐标位置,即一个像素对应一个坐标,所以其坐标系也叫图像…...
前端VUE项目启动方式
将VUE项目的前端项目运行起来,整个过程非常简单,预计5分钟就可以完成,取决于大家的网速。 项目运行先安装Node.js Windows 安装 Node.js 指南:http://www.iocoder.cn/NodeJS/windows-install(opens new window) Mac 安装 Node.js…...
Python小白学习教程从入门到入坑------习题课5(基础巩固)
目录 实战题 1、“千年虫”是什么虫? 2、模拟京东购物流程 3、模拟12306火车票订票流程 4、模拟手机通讯录 实战题 1、“千年虫”是什么虫? 要求:已知一个列表中存储的是员工的出生年份 [88,89,90,98,00,99] 由于时间比较久,出生的年份均为2位整数…...
飞凌嵌入式T113-i开发板RISC-V核的实时应用方案
随着市场对嵌入式设备的功能需求越来越高,集成了嵌入式处理器和实时处理器的主控方案日益增多,以便更好地平衡性能与效率——实时核负责高实时性任务,A核处理复杂任务,两核间需实时交换数据。然而在数据传输方面,传统串…...
基于Java后台实现百度、高德和WGS84坐标的转换实战
目录 前言 一、需求的缘由 1、百度坐标拾取 2、高德坐标拾取 3、不同地图的坐标展示 二、后端坐标偏移转换处理 1、相关类库介绍 2、coordtransorm类图介绍 3、后台实际转换 三、总结 前言 在当今数字化时代,地理位置信息的精确性和实时性对于各种应用至…...
SQL,力扣题目1635,Hopper 公司查询 I
一、力扣链接 LeetCode_1635 二、题目描述 表: Drivers ---------------------- | Column Name | Type | ---------------------- | driver_id | int | | join_date | date | ---------------------- driver_id 是该表的主键(具有唯一值的列)。 该表的每一行…...
Android 分区相关介绍
目录 一、MTK平台 1、MTK平台分区表配置 2、MTK平台刷机配置表 3、MTK平台分区表配置不生效 4、Super分区的研究 1)Super partition layout 2)Block device table 二、高通平台 三、展锐平台 四、相关案例 1、Super分区不够导致编译报错 经验…...
JMeter监听器与压测监控之 InfluxDB
1. 简介 在本文中,我们将介绍如何在 Kali Linux 上通过 Docker 安装 InfluxDB,并使用 JMeter 对其进行性能监控。InfluxDB 是一个高性能的时序数据库,而 JMeter 是一个开源的性能测试工具,可以用于对各种服务进行负载测试和性能监…...
信息安全管理与评估赛项(网络安全)--应急响应专项训练
web1 题目来源:https://mp.weixin.qq.com/s/89IS3jPePjBHFKPXnGmKfA 题目 1.攻击者的shell密码2.攻击者的IP地址3.攻击者的隐藏账户名称4.攻击者挖矿程序的矿池域名(仅域名)5.有实力的可以尝试着修复漏洞靶机 用户:administrator密码:Zgsfadmin.com题解 攻击者…...
ElasticSearch学习篇18_《检索技术核心20讲》LevelDB设计思想
目录 一些常见的设计思想以及基于LSM树的LevelDB是如何利用这些设计思想优化存储、检索效率的。 几种常见的设计思想 索引和数据分离减少磁盘IO读写分离分层思想 LevelDB的设计思想 读写分离设计分层设计与延迟合并LRU缓存加速检索 几种常见设计思想 索引与数据分离 索引…...
使用 FFmpeg 提取音频的详细指南
FFmpeg 是一个开源的多媒体处理工具,支持视频、音频的编码、解码、转换等多种功能。通过 FFmpeg,提取视频中的音频并保存为各种格式非常简单和高效。这在音视频剪辑、媒体处理、转码等场景中具有广泛的应用。 本文将详细讲解如何使用 FFmpeg 提取音频&a…...
中国省级新质生产力发展指数数据(任宇新版本)2010-2023年
一、测算方式:参考C刊《财经理论与实践》任宇新(2024)老师的研究,新质生产力以劳动者劳动资料劳动对象及其优化组合的质变为 基本内涵,借 鉴 王 珏 和 王 荣 基 的 做 法构建新质生产力发展水平评价指标体系如下所示&a…...
C++设计模式:建造者模式(Builder) 房屋建造案例
什么是建造者模式? 建造者模式是一种创建型设计模式,它用于一步步地构建一个复杂对象,同时将对象的构建过程与它的表示分离开。简单来说: 它将复杂对象的“建造步骤”分成多部分,让我们可以灵活地控制这些步骤。通过…...
Python 快速入门(上篇)❖ Python基础知识
Python 基础知识 Python安装**运行第一个程序:基本数据类型算术运算符变量赋值操作符转义符获取用户输入综合案例:简单计算器实现Python安装** Linux安装: yum install python36 -y或者编译安装指定版本:https://www.python.org/downloads/source/ wget https://www.pyt…...
string接口的模拟实现
文章目录 一. string底层逻辑演示声明和定义分开 二. size()三. operator[]四. 迭代器四. const迭代器五. 预留空间(reserve)六. 尾插一个字符push_back七. 尾插一个字符串append八. operator九. operator 一. string底层逻辑 (1)为了和库里面…...
sed使用扩展正则表达式时, -i 要写在 -r 或 -E 的后面
sed使用扩展正则表达式时, -i 要写在 -r 或 -E 的后面 前言 -r 等效 -E , 启用扩展正则表达式 -E是新叫法,更统一,能增强可移植性 , 但老系统,比如 CentOS-7 的 sed 只能用 -r ### Ubuntu24.04-E, -r, --regexp-extendeduse extended regular expressions in the script(fo…...
Verilog HDL可综合与不可综合语句
目录 什么是逻辑综合 可综合语句 不可综合语句 逻辑综合建模建议 综合流程 什么是逻辑综合 所谓逻辑综合就是在标准单元库和特定的设计约束的基础上,把设计的高层次描述转换成优化的门级网表的过程。 标准单元库(工艺库)可以包含简单的…...
tomcat 后台部署 war 包 getshell
1. tomcat 后台部署 war 包 getshell 首先进入该漏洞的文件目录 使用docker启动靶场环境 查看端口的开放情况 访问靶场:192.168.187.135:8080 访问靶机地址 http://192.168.187.135:8080/manager/html Tomcat 默认页面登录管理就在 manager/html 下,…...
网络云计算】2024第47周-每日【2024/11/21】周考-实操题-RAID6实操解析1
文章目录 1、RAID6配置指南(大致步骤)2、注意事项3、截图和视频 网络云计算】2024第47周-每日【2024/11/21】周考-实操题-RAID6实操 RAID6是一种在存储系统中实现数据冗余和容错的技术,其最多可以容忍两块磁盘同时损坏而不造成数据丢失。RAID…...
前端面试题大汇总:React 篇
基础知识 1. 什么是 React?它的主要特点是什么? React 是一个用于构建用户界面的 JavaScript 库,由 Facebook 开发并维护。它主要用于构建单页应用程序(SPA)和复杂的用户界面。React 的主要特点包括: 组件…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护
摘要 本文以健康管理应用为例,展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制,实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码,演示鸿蒙系统如何平衡功能需求与隐私安…...
2025年上海市“星光计划”第十一届职业院校技能大赛 网络安全赛项技能操作模块样题
2025年上海市“星光计划”第十一届职业院校技能大赛 网络安全赛项技能操作模块样题 (二)模块 A:安全事件响应、网络安全数据取证、应用安全、系统安全任务一:漏洞扫描与利用:任务二:Windows 操作系统渗透测试 :任务三&…...
智慧城市项目总体建设方案(Word700页+)
1 背景、现状和必要性 1.1 背景 1.1.1 立项背景情况 1.1.2 立项依据 1.2 现状 1.2.1 党建体系运行现状 1.2.2 政务体系运行现状 1.2.3 社会治理运行现状 1.2.4 安全监管体系现状 1.2.5 环保体系运行现状 1.2.6 城建体系运行现状 1.2.7 社区体系运行现状 1.2.8 园区…...
【AI学习】wirelessGPT多任务无线基础模型摘要
收看了关于WirelessGPT多任务无线基础模型的演讲视频,边做一个记录。 应该说,在无线通信大模型的探索方面,有一个非常有益的尝试。 在沈学明院士带领下开展 https://www.chaspark.com/#/live/1125484184592834560...
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP (Dimensionality Reduction for Ordered Points via PCA) 是一种专门针对有序数据的降维方法。本文将详细介绍该算法的理论基础、实现步骤以及在降维任务中的具体应用。 在现代数据分析中,高维数据集普遍存在特征数量庞大的问题。这种高维特性不仅增加了计算…...
