当前位置: 首页 > news >正文

MySQL面试-1

 InnoDB中ACID的实现

先说一下原子性是怎么实现的。 事务要么失败,要么成功,不能做一半。聪明的InnoDB,在干活儿之前,先将要做的事情记录到一个叫undo log的日志文件中,如果失败了或者主动rollback,就可以通过undo log的内容,将事务回滚。


那undo log里面具体记录了什么信息呢?


undo log属于逻辑日志,它记录的是sql执行相关的信息。当发生回滚时,InnoDB会根据undo log的内容做与之前相反的工作,使数据回到之前的状态


那隔离性怎么实现呢?


MySQL能支持Repeatable Read这种高隔离级别,主要是锁和MVCC一起努力的结果。 我先说锁吧。事务在读取某数据的瞬间,必须先对其加行级共享锁,直到事务结束才释放;事务在更新某数据的瞬间,必须先对其加行级排他锁,直到事务结束才释放; 为了防止幻读,还会有间隙锁进行区间排它锁定。
然后是MVCC,多版本并发控制,主要是为了实现可重复读,虽然锁也可以,但是为了更高性能考虑,使用了这种多版本快照的方式。
因为是快照,所以一个事务针对同一条Sql查询语句的结果,不会受其它事务影响。

MySQL为什么用树做索引?


一般而言,能做索引的,要么Hash,要么树,要么就是比较特殊的跳表。Hash不支持范围查询,跳表不适合这种磁盘场景,而树支持范围查询,且多种多样,很多树适合磁盘存储。所以MySQL选择了树来做索引。

MySQL锁的分类吧。


MySQL从锁粒度粒度上讲,有表级锁、行级锁。从强度上讲,又分为意向共享锁、共享锁、意向排它锁和排它锁。


间隙锁就是对索引行进行加锁操作,不仅锁住其本身,还会锁住周围邻近的范围区间。间隙锁的目的是为了解决幻影读,但也因此带来了更大的死锁隐患。
比如,一个任务表里面有个状态字段,是一个非唯一索引,有一个任务id,是唯一索引。 一个sql将状态处于执行中的任务设置为等待中,另一个sql正好通过任务id更新在范围内的一条任务信息。那么因为是在不同索引加锁的,所以都能成功。但是最后去更新主键数据的时候,就会死锁。

那要怎么找到MySQL执行慢的语句呢?


我们可以看慢查询日志,它是MySQL提供的一种日志记录,用来记录在MySQL中响应时间超过阀值的语句,这个阈值通常默认为10s,也可以按需配置。
Mysql是默认关闭慢查询日志的,所以需要我们手动开启。set global slow_query_log=1


那找到慢语句之后,怎么查看它的执行计划?


使用explain命令,它可以获取到MySQL语句的执行计划 ,包括会使用的索引、扫描行数、表如何连接等信息。 通过这个命令,我们很容易就看出一条语句是否使用了我们预期的索引,并进行相应的调整。

 MySQL如果查询压力太大该怎么办?


如果SQL语句已经足够优秀。那么就看请求压力是否符合二八原则,也就是说80%的压力都集中在20%的数据。 如果是,我们可以增加一层缓存,常用的实现是在MySQL前加个Redis缓存。当然,如果实在太大了,那么只能考虑分库分表啦。


如果是写入压力太大呢?


写缓冲。一般而言可以增加消息队列来缓解。这样做有两个好处,一个是缓解数据库压力,第二个可以控制消费频率。

如果发现线上Insert导致cpu很高,你会怎么解决?


1.查看是不是请求量突然飙升导致,如果是攻击,则增加对应的防护;
2.查看是否因为数据规模达到一个阈值,导致MySQL的处理能力发生了下降;
3.查看二级索引是否建立过多,这种情况需要去清理非必要索引。

Count操作的性能怎么优化?


第一种,是用Redis缓存来计数。每次服务启动,就将个数加载进Redis,这种方案适用于对数据精确度,要求不是特别高的场景。
第二种,为count的筛选条件建立联合索引。这样可以实现索引覆盖,在二级索引表中就可以得到结果,不用再回表,回表可是O(n)次随机I/O呢。这种方案适用于有where条件的情况,并且与其它方案不冲突,可共同使用。 第三种,可以多维护一个计数表,通过事务的原子性,维持一个准确的计数。这种方案适用于对数据精度高,读多写少场景。
你对MySQL分表有了解吗?
随着业务持续扩张,单表性能一定会达到极限,分表是把一个数据库中的数据表拆分成多张表,通过分布式思路提供可扩展的性能。
那你做过的项目中,分表逻辑怎么实现的?
分表逻辑一定是在一个公共的,可复用的位置来实现。我之前做的项目,是实现了一个本地依赖包,即将分表逻辑写在公共的代码库里,每个需要调用服务的客户方都集成该公共包,就接入了自动分表的能力。 优点在于简单,不引入新的组件,不增加运维难度。缺点是公共包更改后每个客户端都需要更新。

如果初期没做分表,已有3000W数据,此时要分库分表怎么做?


最复杂的情况,持续比较大的访问流量下,并且要求不停服。我们可以分几个阶段来操作:
1. 双写读老阶段:通过中间件,对write sql同时进行两次转发,也就是双写,保持新数据一致,同时开始历史数据拷贝。本阶段建议施行一周;
2. 双写双读阶段:采用灰度策略,一部分流量读老表,一部分流量读新表,读新表的部分在一开始,还可以同时多读一次老表数据,进行比对检查,观察无误后,随着时间慢慢切量到新表。本阶段建议施行至少两周; 3. 双写读新阶段:此时基本已经稳定,可以只读新表,为了安全保证,建议还是多双写一段时间,防止有问题遗漏。本阶段建议周期一个月; 4. 写新读新阶段:此时已经完成了分表的迁移,老表数据可以做个冷备;

MySQL都有哪些锁?举出所有例子,各个锁的作用是什么?区别是什么?
1.从数据操作的类型分类
共享锁(S锁):也称为读锁,对于其他事务而言是可读不可写的。多个事务可以同时持有共享锁,并且共享锁之间不会互斥。
排他锁(X锁):也称写锁,对于其他事务而言是不可读也不可写的,确保在多个事务中,对同一资源,只有一个事务能写入,并防止其他用户读取正在写入的资源。
2.从锁的粒度分类
2.1 表锁(Table Lock)
锁定整张表。表锁又可分为:表级别的S锁和X锁、意向锁、元数据锁、自增锁
2.11 表级别的S锁和X锁
一般情况下,不会使用到InnoDB中提供的表级别的S锁和X锁,只会在一些特殊情况下,比方说崩溃恢复过程中用到;而在MyISM比较常用。
2.1.2 意向锁
假如有事务T1和T2,T1获取了某表中最后一行记录的行锁(S锁),此时T2想加表锁(X锁),这是不允许的(S锁和X锁互斥),但是T2并不知道该表有没有加过行锁,需要一行一行的去检查,直到最后一行,效率非常低。但是如果有意向锁的话,T1获取行锁时,会额外加上表级别的意向锁,告诉其他事务该表已经有人加过锁了。此时T2只需要检查该表上是否有意向锁即可。
意向锁的作用就是加快表锁的检查过程。
意向锁是由存储引擎自己维护的 ,用户无法手动获取,在为数据行加共享/排他锁之前,InooDB会先获取该数据所在表的对应意向锁。意向锁可分为:
●意向共享锁(IS):事务有意向对表中的某些行加共享锁(S锁),会自动加上意向共享锁
●意向排他锁(IX):事务有意向对表中的某些行加排他锁(X锁),会自动加上意向排它锁
2.1.3 自增锁
表中有自增列时,插入记录会使用到自增锁,一个事务持有自增锁时,其他事务的插入语句会被阻塞。了解即可。
2.1.4 元数据锁
在对某个表执行一些诸如ALTER TABLE 、DROP TABLE这类的DDL语句时,其他事务对这个表并发执行诸如SELECT、INSERT、DELETE、UPDATE的语句会发生阻塞。同理,某个事务中对某个表执行SELECT、INSERT、DELETE、UPDATE语句时,在其他事务中对这个表执行DDL语句也会发生阻塞。这个过程其实是通过在server层使用一种称之为元数据锁(英文名: Metadata Locks ,简称 MDL)结构来实现的。
MDL主要是为了避免DML和DDL冲突,保证读写的正确性。
2.2 行锁
2.21 记录锁(Record Locks)
记录锁就是行级别的X锁和S锁,仅仅锁住一行记录,分S型记录锁和X型记录锁;
2.22 间隙锁(Gap Locks)
gap锁的提出仅仅是为了防止插入幻影记录而提出的,没有额外其他功能。
2.23 临键锁(Next-Key Locks)
InnoDB默认的锁就是Next-Key locks。
临键锁 = 记录锁 + 间隙锁
在可重复读隔离级别下默认加的行锁就是临键锁,防止幻读。但是有些时候InnoDB会将它优化为记录锁或间隙锁:
2.3全局锁
全局锁就是对整个数据库实例加锁。当你需要让整个库处于只读状态的时候,可以使用这个命令,主要是做全库逻辑备份;备份时应该锁定整个库,保证数据的完整性。
3.从锁的态度分类
分为悲观锁和乐观锁。需要注意的是,乐观锁和悲观锁并不是锁,而是锁的设计思想 。
1.悲观锁(Pessimistic Locking)
假设最坏的情况,每次操作数据都会加上锁,如行锁、表锁等,都是在做操作之前先上锁,当其他线程想要访问数据时,都需要阻塞挂起。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。
2.乐观锁(Optimistic Locking)
乐观锁认为对同一数据的并发操作不会总发生,属于小概率事件,不用每次都对数据上锁,它不采用数据库自身的锁机制,而是通过程序来实现。
在程序上,我们可以采用版本号机制或者CAS机制实现。乐观锁适用于多读和冲突不激烈的应用类型,这样可以提高吞吐量。在Java中通过CAS实现的。
4.死锁
●直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
●发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数innodb_deadlock_detect设置为on ,表示开启这个逻辑。


一条sql更新的执行流程?

1.通过连接器建立连接;

2.解析SQL语句执行计划,交给执行器执行;

3.从磁盘加载page页到内存的buffer pool;

4.记录undolog日志,用于mvcc和回滚操作;

5.更新buffer pool的数据,记录page页的更改;

6.写入redo log,把redo log状态记为prepare;

7.记录bin log逻辑日志,用于主从同步和数据备份;

8.提交事务,将redo log状态改为commit;

MySQL的Server和引擎层有什么区别?为什么要分层?

连接层:用户与MYSQL服务进行TCP链接,校验用户身份,用户权限。

服务层:用户写的SQL语句会到服务层进行解析,生成语法树。优化SQL语句,生成执行计划。

引擎层:真正与磁盘进行交互,对数据进行存储和读取。

区别:

分层架构使得MySQL可以更加容易地扩展新的功能和服务。

MySQL可以更加高效地进行查询处理和事务管理。

MySQL有缓存机制吗?buffer pool和change buffer作用是什么?

Buffer Pool(缓冲池):

内存中以页(page)为单位缓存磁盘数据,减少磁盘IO,提升访问速度

缓冲池大小默认128M,独立的MySQL服务器推荐设置缓冲池大小为总内存的80%。主要存储数据页、索引页更新缓冲(change buffer)等

Change Buffer(写缓冲)

如果每次写操作,数据库都直接更新磁盘中的数据,会很占磁盘IO。为了减少磁盘IO,

InnoDB在Buffer Pool中开辟了一块内存,用来存储变更记录,为了防止异常宕机丢失缓存,

当事务提交时会将变更记录持久化到磁盘(redo log),等待时机更新磁盘的数据文件(刷脏),

用来缓存写操作的内存,就是Change Buffer

Change Buffer默认占Buffer Pool的25%,最大设置占用50%:

相关文章:

MySQL面试-1

InnoDB中ACID的实现 先说一下原子性是怎么实现的。 事务要么失败,要么成功,不能做一半。聪明的InnoDB,在干活儿之前,先将要做的事情记录到一个叫undo log的日志文件中,如果失败了或者主动rollback,就可以通…...

nginx配置不缓存资源

方法1 location / {index index.html index.htm;add_header Cache-Control no-cache,no-store;try_files $uri $uri/ /index.html;#include mime.types;if ($request_filename ~* .*\.(htm|html)$) {add_header Cache-Control "private, no-store, no-cache, must-revali…...

PHP导出EXCEL含合计行,设置单元格格式

PHP导出EXCEL含合计行,设置单元格格式,水平居中 垂直居中 public function exportSalary(Request $request){//水平居中 垂直居中$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CE…...

RabbitMQ 之 死信队列

一、死信的概念 先从概念解释上搞清楚这个定义,死信,顾名思义就是无法被消费的消息,字面意思可以这样理 解,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息进行…...

【创建型设计模式】单例模式

【创建型设计模式】单例模式 这篇博客接下来几篇都将阐述设计模式相关内容。 接下来的顺序大概是:单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。 一、什么是单例模式 单例模式是一种创建型设计模式,它保证一个类仅有一个实例&#…...

Charles抓包工具-笔记

摘要 概念: Charles是一款基于 HTTP 协议的代理服务器,通过成为电脑或者浏览器的代理,然后截取请求和请求结果来达到分析抓包的目的。 功能: Charles 是一个功能全面的抓包工具,适用于各种网络调试和优化场景。 它…...

Go语言使用 kafka-go 消费 Kafka 消息教程

Go语言使用 kafka-go 消费 Kafka 消息教程 在这篇教程中,我们将介绍如何使用 kafka-go 库来消费 Kafka 消息,并重点讲解 FetchMessage 和 ReadMessage 的区别,以及它们各自适用的场景。通过这篇教程,你将了解如何有效地使用 kafk…...

【论文笔记】Number it: Temporal Grounding Videos like Flipping Manga

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: Number it: Temporal Grou…...

C语言菜鸟入门·关键字·int的用法

目录 1. int关键字 1.1 取值范围 1.2 符号类型 1.3 运算 1.3.1 加法运算() 1.3.2 减法运算(-) 1.3.3 乘法运算(*) 1.3.4 除法运算(/) 1.3.5 取余运算(%) 1.3.6 自增()与自减(--) 1.3.7 位运算 2. 更多关键字 1. int关键字 int 是一个关键字&#xff0…...

基于企业微信客户端设计一个文件下载与预览系统

在企业内部沟通与协作中,文件分享和管理是不可或缺的一部分。企业微信(WeCom)作为一款广泛应用于企业的沟通工具,提供了丰富的API接口和功能,帮助企业进行高效的团队协作。然而,随着文件交换和协作的日益增…...

昇思MindSpore第七课---文本解码原理

1. 文本解码原理 文本解码是将模型的输出(通常是概率分布或词汇索引)转换为可读的自然语言文本的过程。在生成文本时,常见的解码方法包括贪心解码、束搜索(BeamSearch)、随机采样等。 2 实践 2.1 配置环境 安装mindn…...

C# 数据结构之【图】C#图

1. 图的概念 图是一种重要的数据结构,用于表示节点(顶点)之间的关系。图由一组顶点和连接这些顶点的边组成。图可以是有向的(边有方向)或无向的(边没有方向),可以是加权的&#xff…...

传输控制协议(TCP)和用户数据报协议(UDP)

一、传输控制协议(TCP) 传输控制协议(Transmission Control Protocol,TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由 IETF 的 RFC 793 定义。 它通过三次握手建立连接,确保数…...

【Python爬虫】Scrapy框架实战---百度首页热榜新闻

如何利用Scrapy框架实战提取百度首页热榜新闻的排名、标题和链接 一、安装Scrapy库 二、创建项目(以BaiduSpider为例) scrapy startproject BaiduSpider生成每个文件的功能: 二、 创建爬虫脚本(爬虫名:news&#xff…...

采用python3.12 +django5.1 结合 RabbitMQ 和发送邮件功能,实现一个简单的告警系统 前后端分离 vue-element

一、开发环境搭建和配置 #mac环境 brew install python3.12 python3.12 --version python3.12 -m pip install --upgrade pip python3.12 -m pip install Django5.1 python3.12 -m django --version #用于检索系统信息和进程管理 python3.12 -m pip install psutil #集成 pika…...

Qt 实现网络数据报文大小端数据的收发

1.大小端数据简介 大小端(Endianness)是计算机体系结构的一个术语,它描述了多字节数据在内存中的存储顺序。以下是大小端的定义和它们的特点: 大端(Big-Endian) 在大端模式中,一个字的最高有效…...

[译]Elasticsearch Sequence ID实现思路及用途

原文地址:https://www.elastic.co/blog/elasticsearch-sequence-ids-6-0 如果 几年前,在Elastic,我们问自己一个"如果"问题,我们知道这将带来有趣的见解: "如果我们在Elasticsearch中对索引操作进行全面排序会怎样…...

Java基于SpringBoot+Vue的藏区特产销售平台

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

12-表的约束

知识背景 表的约束,就是在表中的数据上加上约束,也被称为数据完整性约束。数据完整性约束的目的是为了不被规定的、不符合规范的数据进入数据库 在录入数据库或数据发生变化时,DBMS(数据库管理系统)会按照一定的约束条件对数据进行监测&…...

【人工智能】深度学习入门:用TensorFlow实现多层感知器(MLP)模型

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 多层感知器(MLP)是一种基础的神经网络结构,广泛应用于分类和回归任务。作为深度学习的重要组成部分,理解并实现MLP是学习更复杂神经网络模型的基础。本文将介绍多层感知器的核心概念、数学原理,并使用…...

【Go】-go中的锁机制

目录 一、锁的基础知识 1. 互斥量/互斥锁 2. CAS(compare and swap) 3. 自旋锁 4. 读写锁 5. 乐观锁 & 悲观锁 6. 死锁 二、go中锁机制 1. Mutex-互斥锁 2. RWMutex-读写锁 2.1 RWMutex流程概览 2.2 写锁饥饿问题 2.3. golang的读写锁源…...

c ++零基础可视化——vector

c 零基础可视化——vector 初始化 vector<int> v0(5); // 0 0 0 0 0 vector<int> v1(5, 1); // 1 1 1 1 1 vector<int> v2{1, 2, 3} // 1 2 3 vector<int> v3(v1); // 1 1 1 1 1 vector<vector<int>> v4(2, vect…...

Centos 7 安装 Docker 最新版本

文章目录 一、卸载旧版本二、安装最新版本docker三、问题解决3.1 启动docker报错3.2 启动容器报错 一、卸载旧版本 #如果之前安装过旧版本的Docker&#xff0c;可以使用下面命令卸载 yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest …...

构建高效在线教育:SpringBoot课程管理系统

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理在线课程管理系统的相关信息成为必然。开发…...

二进制与网络安全的关系

二进制与网络安全的关系 声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以…...

【计算机网络】网段划分

一、为什么有网段划分 IP地址 网络号(目标网络) 主机号(目标主机) 网络号: 保证相互连接的两个网段具有不同的标识 主机号: 同一网段内&#xff0c;主机之间具有相同的网络号&#xff0c;但是必须有不同的主机号 互联网中的每一台主机&#xff0c;都要隶属于某一个子网 -&…...

VB、VBS、VBA的区别及作用

VB、VBS 和 VBA 是三种与微软 Visual Basic 相关的编程语言或环境&#xff0c;它们在功能和用途上有所不同&#xff1a; # Visual Basic (VB) Visual Basic 是一种面向对象的编程语言&#xff0c;最初由微软公司开发。它是一种高级编程语言&#xff0c;旨在简化开发过程&…...

深度学习中的循环神经网络(RNN)与时间序列预测

一、循环神经网络&#xff08;RNN&#xff09;简介 循环神经网络&#xff08;Recurrent Neural Networks&#xff0c;简称RNN&#xff09;是一种专门用于处理序列数据的神经网络架构。与传统神经网络不同&#xff0c;RNN具有内部记忆能力&#xff0c;能够捕捉数据中的时间依赖…...

Unity 设计模式-原型模式(Prototype Pattern)详解

原型模式 (Prototype Pattern) 原型模式 (Prototype Pattern) 是一种创建型设计模式&#xff0c;它允许通过复制现有的对象来创建新对象&#xff0c;而不是通过直接实例化类。这意味着你可以通过克隆原型对象来生成新的实例&#xff0c;而不必依赖类的构造函数。该模式的核心思…...

如何在 RK3568 Android 11 系统上排查以太网问题

1. 硬件连接检查 在进行软件诊断之前,首先确保所有硬件连接正常: 确认网线可靠插入设备的以太网端口。交换机、路由器中与设备连接的端口是否正常工作。若有可能,尝试更换网线或使用其他端口。2. 使用命令行工具进行基本检查 检查网络接口状态 连接设备并使用 ADB 或终端…...