当前位置: 首页 > news >正文

进程间通信5:信号

引入

我们之前学习了信号量,信号量和信号可不是一个东西,不能混淆。

信号是什么以及一些基础概念

信号是一种让进程给其他进程发送异步消息的方式

  1. 信号是随时产生的,无法预测
  2. 信号可以临时保存下来,之后再处理
  3. 信号是异步发送的。因为这两个进程(发送信号的进程和接收信号的进程)互不相干

kill -l :查看信号

我们可以使用kill -l查看所有信号

他的输出大概是这样子

1) SIGHUP      2) SIGINT      3) SIGQUIT     4) SIGILL
5) SIGTRAP     6) SIGABRT     7) SIGBUS      8) SIGFPE
...
  1. 可以发现没有0、32、33号信号。1-31分别对应一个bit位
  2. 34到64号信号是实时信号:当开始执行实时信号,必须执行完才能执行其他的信号

信号处理

面对信号,我们有多种处理方式:

  1. 默认动作

  2. 自定义处理–>捕捉

  3. 忽略信号

我们就是通过signal系统调用来更改处理信号的方式

信号的产生

有三种方式:kill命令、键盘输入、系统调用

kill命令

使用kill命令

kill -num pid

常见的就是

kill -9 pid
#终止进程

键盘输入

像是输入ctrl c也可以停止当前进程

使用系统调用函数

  1. 使用kill函数:给指定的进程发送指定的信号
#include <sys/types.h>
#include <signal.h>int kill(pid_t pid, int sig);

成功返回0,失败返回-1,并设置errno

  1. raise函数:对调用raise的进程发送信号
#include <signal.h>int raise(int sig);

这个函数功能相当于调用

kill(getpid(), sig);
  1. abort函数
    调用该函数的进程直接退出

  2. 使用signal:修改信号

使用typedef简化写法:

typedef void (*signal_handler_t)(int);
signal_handler_t signal(int sig, signal_handler_t func);
//func是回调函数
//底层调用func的时候,func的参数就是sig

我们先传入要对哪个信号进行修改,再传入我们自定义的修改方法(func)
并且修改一次后一直生效

SIG_IGN
是ignore,忽略信号的意思,

signal(num, SIG_IGN)
//接收num信号后,不执行任何操作
//9号19号信号无法被忽略(可以区了解一下这两个信号的作用就能理解为什么了

异常

最常见的就是代码出现问题,爆出了异常

比如出现num/0的情况,产生SIGFPE信号,
访问野指针,产生11号信号SIGSEGV

Core Dump

  1. 是什么
    当一个进程要异常终止时,可以选择**把进程的用户空间内存数据全部保存到磁盘上,文件名通常是core,**这叫做Core Dump。

  2. 为什么
    进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的, 因为core文件中可能包含用户密码等敏感信息,不安全,以及防止频繁崩溃导致生成大量core dump文件
    在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K:

ulimit -c 1024

信号保存

信号其他相关常见概念

  1. 实际执行信号的处理动作称为信号递达(Delivery) (默认、忽略、自定义)
  2. 信号从产生到递达之间的状态,称为信号未决(Pending)(信号被临时保存)
  3. 进程可以选择阻塞 (Block )某个信号。(即无法执行该信号,具体原理是位图)
  4. 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
  5. 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作
  6. 9和19号进程无法屏蔽

内核中的结构:三张表(重要)

在这里插入图片描述这张图显示了block位图记录信号是否阻塞、pending位图表示未决、handler表示函数指针数组,记录信号执行方法

对三张表的操作

从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。
因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。
阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

基本接口(了解即可

#include <signal.h>// 初始化信号集为空(不包含任何信号)。
// 参数:
//   set - 指向要初始化的信号集。
// 返回值:
//   成功返回 0,失败返回 -1。
int sigemptyset(sigset_t *set);// 将信号集中的所有信号置为有效(包含所有信号)。
// 参数:
//   set - 指向要填充的信号集。
// 返回值:
//   成功返回 0,失败返回 -1。
int sigfillset(sigset_t *set);// 向信号集中添加一个指定的信号。
// 参数:
//   set   - 指向信号集。
//   signo - 要添加的信号编号。
// 返回值:
//   成功返回 0,失败返回 -1。
int sigaddset(sigset_t *set, int signo);// 从信号集中删除一个指定的信号。
// 参数:
//   set   - 指向信号集。
//   signo - 要删除的信号编号。
// 返回值:
//   成功返回 0,失败返回 -1。
int sigdelset(sigset_t *set, int signo);// 检查某个信号是否在信号集中。
// 参数:
//   set   - 指向信号集。
//   signo - 要检查的信号编号。
// 返回值:
//   如果信号在信号集中,返回 1;否则返回 0;失败返回 -1。
int sigismember(const sigset_t *set, int signo);

在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号。

注意: 上面的接口都没有写入内核中,需要

sigprocmask:修改block位图

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
返回值:若成功则为0,若出错则为-1

在这里插入图片描述

sigpending:查看未决信号集

#include <signal.h>int sigpending(sigset_t *set);

可以用于 查看哪些信号被屏蔽且处于等待状态。

补充
pending位图先清零,对应信号再递达

信号的处理

什么时候处理

进程从内核态切换到用户态时,OS检测并处理信号

如何处理

可以先看一下下面这个图
在这里插入图片描述

能看到有4次状态切换,这里的原理是:
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。
由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler比和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函数返
回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复

调用与屏蔽

当某个信号的处理函数被调用时,**内核自动将该信号加入进程的信号屏蔽字,**即处理期间,不允许再次调用。
当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。

结语

进程间通信到这里就暂时结束了(虽然内存池还差代码实现、共享内存还完全没写,但我准备之后用到了再写),希望对大家有帮助

相关文章:

进程间通信5:信号

引入 我们之前学习了信号量&#xff0c;信号量和信号可不是一个东西&#xff0c;不能混淆。 信号是什么以及一些基础概念 信号是一种让进程给其他进程发送异步消息的方式 信号是随时产生的&#xff0c;无法预测信号可以临时保存下来&#xff0c;之后再处理信号是异步发送的…...

性能测试及调优

一、性能测试介绍 1、什么叫做性能测试&#xff1f; &#xff08;1&#xff09;通过某些工具或手段来检测软件的某些指标是否达到了要求&#xff0c;这就是性能测试 &#xff08;2&#xff09;指通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指…...

实战基于LangChain和ChatGLM私有化部署聊天机器人

本文主要阐述了如何使用第二代6B模型进行对话训练&#xff0c;以及如何通过微调来提高大模型的性能。文中提到了在8501端口上启动第二代6B模型&#xff0c;并使用极简模板进行请求。与第一代模型相比&#xff0c;第二代6B模型具有更强的对话能力&#xff0c;并且可以通过微调来…...

利用adb工具安装卸载安卓平板(手机)软件

参考链接&#xff1a; 1、ADB 操作命令详解及用法大全 2、全面掌握Android调试工具箱&#xff1a;ADB与实用程序实战 平时使用小米手机没有感觉&#xff0c;miui系统做的确实好。最近买了个水货学习系统平板&#xff08;主要看重硬件配置&#xff0c;性价比很高&#xff0c;但…...

基于docker进行任意项目灵活发布

引言 不管是java还是python程序等&#xff0c;使用docker发布的优势有以下几点&#xff1a; 易于维护。直接docker命令进行管理&#xff0c;如docker stop、docker start等&#xff0c;快速方便无需各种进程查询关闭。环境隔离。项目代码任何依赖或设置都可以基本独立&#x…...

Datatables:监听行内文本框,进行行内数据修改;计算行总和

一、监听行内文本框&#xff0c;进行行内数据修改 效果 修改数量、单价会自动计算金额&#xff08;金额数量*单价&#xff09; 实现 1、增加行的class 2、数据监听、修改数值 "initComplete": function() {// 监听数量和单价输入框的变化$(document).on(input, .…...

对于某些原型或UI软件的个人看法(2024/11)

由于我这几天&#xff0c;一边敲代码&#xff0c;一边进行页面布局设计与编码&#xff0c;发现可能就一个卡片&#xff0c;我都得调很久样式&#xff0c;觉得这样改很累也没效率&#xff0c;页面也不是很美观。所以我想到了ui设计&#xff0c;我可以先进行ui设计&#xff0c;然…...

嵌入式硬件实战提升篇(二)PCB高速板设计 FPGA核心板带DDR3 PCB设计DDR全面解析

引言&#xff1a;设计一款高速板&#xff0c;供读者学习&#xff0c;FPGA核心板&#xff0c;带一颗DDR3内存&#xff0c;FPGA型号&#xff1a;XC6SLX16-2FTG256C。 随着嵌入式硬件技术的快速发展&#xff0c;高速板设计逐渐成为嵌入式系统设计中的核心技术之一。高速板的设计要…...

亚信安全携手飞书“走近先进” 与保隆科技探索制造业数字化转型

亚信安全携手飞书组织举办“走近先进”活动。近日活动“走近”了中国汽车供应链百强、上海市制造业五十强企业——上海保隆汽车科技股份有限公司&#xff08;以下简称“保隆科技”&#xff09;。活动围绕“突破桎梏 加速升级”的主题&#xff0c;聚焦企业数字化转型的核心议题&…...

【C++篇】排队的艺术:用生活场景讲解优先级队列的实现

文章目录 须知 &#x1f4ac; 欢迎讨论&#xff1a;如果你在学习过程中有任何问题或想法&#xff0c;欢迎在评论区留言&#xff0c;我们一起交流学习。你的支持是我继续创作的动力&#xff01; &#x1f44d; 点赞、收藏与分享&#xff1a;觉得这篇文章对你有帮助吗&#xff1…...

VTK的基本概念(一)

文章目录 三维场景的基本要素1.灯光2.相机3.颜色4.纹理映射 三维场景的基本要素 1.灯光 在三维渲染场景中&#xff0c;可以有多个灯光的存在&#xff0c;灯光和相机是三维渲染场景的必备要素&#xff0c;如果没有指定的话&#xff0c;vtkRenderer会自动创建默认的灯光和相机。…...

error LNK2001: 无法解析的外部符号 memcpy strcmp strlen

0>LIBMY_static.lib(pixdesc.obj) : error LNK2001: 无法解析的外部符号 __imp_abort 10>LIBMY_static.lib(random_seed.obj) : error LNK2001: 无法解析的外部符号 __imp_abort 10>postprocess.obj : error LNK2001: 无法解析的外部符号 __imp_abort 10>LIBMY_sta…...

打造智能扩容新纪元:Kubernetes Custom Metrics深度解析

自定义指标:Kubernetes Auto Scaling的革命 1. 引言 1.1 Kubernetes与Auto Scaling Kubernetes作为当今容器编排的事实标准,提供了强大的自动化能力,其中Auto Scaling(自动扩缩容)是其核心特性之一。Auto Scaling允许Kubernetes集群根据当前负载动态调整资源,以应对不…...

【K8s】专题十五(4):Kubernetes 网络之 Calico 插件安装、切换网络模式、卸载

本文内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01; 如果对您有帮助&#xff0c;烦请点赞、关注、转发、订阅专栏&#xff01; 专栏订阅入口 | 精选文章 | Kubernetes | Docker | Linux | 羊毛资源 | 工具推荐 | 往期精彩文章 【Docker】&#xff08;全…...

Unity类银河战士恶魔城学习总结(P141 Finalising ToolTip优化UI显示)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址&#xff1a;https://www.udemy.com/course/2d-rpg-alexdev/ UI部分暂时完结&#xff01;&#xff01;&#xff01; 本章节优化了UI中物品描述的显示效果&#xff0c;技能描述的显示效果 并且可以批…...

c++(入门)

1. 引用 引用的定义 引用是另一个变量的别名&#xff0c;它在声明时必须被初始化&#xff0c;并且一旦初始化后&#xff0c;它就始终引用那个变量。 引用的语法 引用的声明方式是在变量名前加上&符号。 引用的特点 引用必须在声明时初始化。引用一旦初始化后&#x…...

【优选算法】前缀和

目录 一、[【模板】前缀和](https://www.nowcoder.com/practice/acead2f4c28c401889915da98ecdc6bf?tpId230&tqId2021480&ru/exam/oj&qru/ta/dynamic-programming/question-ranking&sourceUrl%2Fexam%2Foj%3Fpage%3D1%26tab%3D%25E7%25AE%2597%25E6%25B3%2595…...

Spring Bean 的生命周期详解

所谓万物皆对象&#xff0c;对于一个 bean 而言&#xff0c;从出生到死亡&#xff0c;他要经历哪些阶段呢&#xff1f; 生命周期 理解对象的生命周期&#xff0c;可以帮助我们更好的做一些扩展。 一个对象从被创建到被垃圾回收&#xff0c;可以大致分为这 5 个阶段&#xff1a…...

MySQL【知识改变命运】12

视图 1&#xff1a;什么是视图2&#xff1a;创建视图使用视图&#xff08;视图的好处&#xff09;2.1.隐藏敏感字段2.2.对外提供统一访问3&#xff1a;视图和真实表进⾏表连接查询 4&#xff1a;修改视图数据4.1&#xff1a;通过真实表修改数据&#xff0c;会影响视图4.2&#…...

shell编程(完整版)

目录 一、shell脚本解释器 二、shell脚本的执行 三、变量的使用 四、永久环境变量 按用户设置永久环境变量 文件路径&#xff1a; 示例步骤&#xff1a; 删除永久环境变量 五、脚本程序传递参数怎么实现 六、用编程进行数学运算 shell中利用expr进行运算 运算与变量…...

数字逻辑(一)——导论

1.导论 1.1什么是数字逻辑&#xff1f; 数字逻辑是指在数字电路设计、计算机科学领域中对于离散的二进制信号进行逻辑处理、运算、存储和传输的基本原理和方法。 1.2数字量和模拟量的区别 数字量&#xff1a;在时间上和数量上都是离散的、不连续的物理量。模拟量&#xff1…...

量化交易系统开发-实时行情自动化交易-4.4.做市策略

19年创业做过一年的量化交易但没有成功&#xff0c;作为交易系统的开发人员积累了一些经验&#xff0c;最近想重新研究交易系统&#xff0c;一边整理一边写出来一些思考供大家参考&#xff0c;也希望跟做量化的朋友有更多的交流和合作。 接下来继续说说做市策略原理。 做市策…...

《线性代数的本质》

之前收藏的一门课&#xff0c;刚好期末复习&#xff0c;顺便看一看哈哈 课程链接&#xff1a;【线性代数的本质】合集-转载于3Blue1Brown官方双语】 向量究竟是什么 线性代数中最基础、最根源的组成部分就是向量&#xff0c;需要先明白什么是向量 不同专业对向量的看法 物理专…...

Gbase8s 允许内置用户创建用户以及创建只读权限用户以及利用角色管理普通用户权限

Gbase8s 允许内置用户创建用户以及创建只读权限用户以及利用角色管理普通用户权限 普通安装实例创建数据库以后,DBA权限只有gbasedbt用户。gbasdbt可以创建普通用户,并且给普通用户赋予库及权限或者表级权限。 但是gbasedbt用户口令和操作系统相关,所以想在不提供gbasedbt的…...

24/11/25 视觉笔记 深度传感器和手势识别

本章的目的是开发一个应用程序&#xff0c;使用深度传感器的输出实时检测和跟踪简单的手势。该应用程序将分析每个已捕捉的帧。并执行以下任务。 手部区域分割&#xff1a;通过分析Kinect传感器的深度图输出&#xff0c;在每一帧中提取用户的手部区域&#xff0c;这是通过阈值…...

迄今为止的排序算法总结

迄今为止的排序算法总结 7.10 迄今为止的排序算法总结复杂度和稳定性时间复杂度测试程序sortAlgorithm.hsortAlgorithm.cpptest.cpp 时间复杂度测试结果 7.10 迄今为止的排序算法总结 复杂度和稳定性 排序算法平均情况最好情况最坏情况稳定性空间复杂度选择排序O(n^2)O(n^2)O…...

HTML和CSS 表单、表格练习

HTML和CSS 表格练习 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>HTML表格练习</title>…...

H5流媒体播放器EasyPlayer.js网页直播/点播播放器如果H.265视频在播放器上播放不流畅,可以考虑的解决方案

随着流媒体技术的迅速发展&#xff0c;H5流媒体播放器已成为现代网络视频播放的重要工具。其中&#xff0c;EasyPlayer.js网页直播/点播播放器作为一款功能强大的H5播放器&#xff0c;凭借其全面的协议支持、多种解码方式以及跨平台兼容性&#xff0c;赢得了广泛的关注和应用。…...

Http 转 https 中 Nginx 的详细配置过程

摘要 本节将简要介绍从 HTTP 到 HTTPS 的配置过程&#xff0c;并完整展示 Nginx 的相关配置信息。 经过两天断断续续的调试&#xff0c;终于将 http 变成 https 了。现在说说这个安装 ssl 证书的过程。 服务器是在某云上。这个过程大致分为三个步骤&#xff1a;申请 ssl 证书、…...

【测试工具JMeter篇】JMeter性能测试入门级教程(二)出炉,测试君请各位收藏了!!!

上篇文章&#xff1a;CSDN 我们介绍了JMeter的一些原理介绍&#xff0c;以及安装配置和启动流程&#xff0c;本文我们就来讲讲JMeter如何使用。 一、JMeter目录结构组成 1. 根目录 Jmeter安装包解压后的根目录如下图&#xff1a; 1.1 backups目录&#xff1a;脚本备份目录&am…...