当前位置: 首页 > news >正文

李宏毅机器学习课程知识点摘要(1-5集)

前5集

过拟合:

参数太多,导致把数据集刻画的太完整。而一旦测试集和数据集的关联不大,那么预测效果还不如模糊一点的模型

所以找的数据集的量以及准确性也会影响

由于线性函数的拟合一般般,所以用一组函数去分段来拟合

sigmoid函数是神来之笔,可以用激活函数去理解

用线性代数来引入神经网络中网络这一概念,想到i与j是不是就自然想到了网络?

sigmoid是函数,而wij就是每个函数里面的参数

先生成一个曲线,然后再把弹性的曲线相加

这里把所有的不管是什么的参量全部抽象、泛化成一个θ向量,

然后用梯度的方法来不断接近,靠update来修正

用到了哈密顿算子,g就直接是对每个参数求偏导

η在这里是学习率,可以自己设置。由于θ0是随意设的,然后减去导数乘学习率的微分,导数小就乘的小呗。

然后我们分割数据集,引入两个名词,epoch和batch

在机器学习中,epoch(周期)是指训练数据集通过模型一次的完整遍历过程。简单来说,1个epoch意味着所有的训练样本都被用来更新模型的参数一次。

batch size=example/epoch     

batch size就是一小堆有多少,分成一堆一堆的。最好要分的均匀,不然每个的bias不一样

另一种激活函数,ReLU。两者被统称为activation function(还有其他的)

sigmoid是一个非线性函数,

Sigmoid 其实不是一个线性的函数,它是一个 **非线性** 函数。让我们深入分析一下:

 Sigmoid 函数的数学形式:
Sigmoid 函数(也称为 logistic 函数)的数学表达式为:

$$
\sigma(x) = \frac{1}{1 + e^{-x}}
$$

这个函数的形状是一个“S”形曲线,输出值的范围在 0 到 1 之间。它的关键特性包括:

- 当 \( x \to \infty \) 时,\( \sigma(x) \to 1 \)
- 当 \( x \to -\infty \) 时,\( \sigma(x) \to 0 \)
- 在 \( x = 0 \) 时,\( \sigma(x) = 0.5 \)

Sigmoid 函数的非线性特性:

曲线形状:

Sigmoid 函数的输出是平滑的 S 型曲线,即它在输入值很大或很小时趋近于常数(0 或 1),而在输入值接近 0 时变化最快。
 

一般我们会选择ReLU

这里选择function不断的进行更新之后,多做几次多做几次

每一层中可以有很多个的ReLU

最后我们就给他赋予一个名字——神经网络

每一个激活函数就是神经元

假设你有一个简单的神经网络,包括一个输入层和一个隐藏层:

### 输入:
\( x_1, x_2 \)(可能是原始数据或前一层的输出)

### 权重:
\( w_1, w_2 \)

### 偏置:
\( b \)

### 激活函数:
假设我们使用 **ReLU** 激活函数。

那么每个隐藏层神经元的计算过程是:

1. **加权求和**:
   $$
   z = w_1 \cdot x_1 + w_2 \cdot x_2 + b
   $$

2. **激活函数**:
   $$
   \text{output} = \text{ReLU}(z)
   $$

在这里,**ReLU** 就是激活函数,它决定了神经元的输出。

---

### 总结:

- **神经元** 是神经网络中的基本单元,负责接收输入、进行计算和输出结果。
- **激活函数** 是神经元中的一个部分,它对神经元的计算结果进行非线性变换,从而使神经网络能够学习复杂的模式。
 

layer就是neuron

相关文章:

李宏毅机器学习课程知识点摘要(1-5集)

前5集 过拟合: 参数太多,导致把数据集刻画的太完整。而一旦测试集和数据集的关联不大,那么预测效果还不如模糊一点的模型 所以找的数据集的量以及准确性也会影响 由于线性函数的拟合一般般,所以用一组函数去分段来拟合 sigmoi…...

React(五)——useContecxt/Reducer/useCallback/useRef/React.memo/useMemo

文章目录 项目地址十六、useContecxt十七、useReducer十八、React.memo以及产生的问题18.1组件嵌套的渲染规律18.2 React.memo18.3 引出问题 十九、useCallback和useMemo19.1 useCallback对函数进行缓存19.2 useMemo19.2.1 基本的使用19.2.2 缓存属性数据 19.2.3 对于更新的理解…...

UE5时间轴节点及其设置

在 Unreal Engine 5 (UE5) 中,时间轴节点 (Timeline) 是一个非常有用的工具,可以在蓝图中实现时间驱动的动画和行为。它允许你在给定的时间范围内执行逐帧的动画或数值变化,广泛应用于动态动画、物体移动、颜色变化、材质变换等场景中。 1. …...

git 命令之只提交文件的部分更改

git 命令之只提交文件的部分更改 有时,我们在一个文件中进行了多个更改,但只想提交其中的一部分更改。这时可以使用 使用 git add -p 命令 Git add -p命令允许我们选择并添加文件中的特定更改。它将会显示一个交互式界面,显示出文件中的每个更…...

算法 差分修改 极简

N个气球排成一排&#xff0c;从左到右依次编号为1,2,3....N.每次给定2个整数a b(a < b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次颜色。但是N次以后lele已经忘记了第I个气球已经涂过几次颜色了&#xff0c;你能帮他算出每个气球被涂过…...

pcb元器件选型与焊接测试时的一些个人经验

元件选型 在嘉立创生成bom表&#xff0c;对照bom表买 1、买电容时有50V或者100V是它的耐压值&#xff0c;注意耐压值 2、在买1117等降压芯片时注意它降压后的固定输出&#xff0c;有那种可调降压比如如下&#xff0c;别买错了 贴片元件焊接 我建议先薄薄的在引脚上涂上锡膏…...

OSG开发笔记(三十三):同时观察物体不同角度的多视图从相机技术

​若该文为原创文章&#xff0c;未经允许不得转载 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/143932273 各位读者&#xff0c;知识无穷而人力有穷&#xff0c;要么改需求&#xff0c;要么找专业人士&#xff0c;要么自己研究 长沙红胖子Qt…...

模糊逻辑学习 | 模糊推理 | 模糊逻辑控制

注&#xff1a;本文为几位功夫博主关于 “模糊逻辑学习 / 推理 / 控制” 的相关几篇文章合辑。 初学模糊逻辑控制&#xff08;Fuzzy Logic Control&#xff09; ziqian__ 已于 2022-08-19 20:30:25 修改 一、前言 模糊逻辑控制&#xff08;Fuzzy Logic Control&#xff09;是…...

【JavaEE】Servlet:表白墙

文章目录 一、前端二、前置知识三、代码1、后端2、前端3、总结 四、存入数据库1、引入 mysql 的依赖&#xff0c;mysql 驱动包2、创建数据库数据表3、调整上述后端代码3.1 封装数据库操作&#xff0c;和数据库建立连接3.2 调整后端代码 一、前端 <!DOCTYPE html> <ht…...

C++特殊类设计(不能被拷贝的类、只能在堆上创建对象的类、不能被继承的类、单例模式)

C特殊类设计 在实际应用中&#xff0c;可能需要设计一些特殊的类对象&#xff0c;如不能被拷贝的类、只能在堆上创建对象的类、只能在栈上创建对象的类、不能被继承的类、只能创建一个对象的类&#xff08;单例模式&#xff09;。 1. 不能被拷贝的类 拷贝只会发生在两个场景…...

【小白学机器学习34】用python进行基础的数据统计 mean,var,std,median,mode ,四分位数等

目录 1 用 numpy 快速求数组的各种统计量&#xff1a;mean, var, std 1.1 数据准备 1.2 直接用np的公式求解 1.3 注意问题 1.4 用print() 输出内容&#xff0c;显示效果 2 为了验证公式的后背&#xff0c;下面是详细的展开公式的求法 2.1 均值mean的详细 2.2 方差var的…...

安装 Docker(使用国内源)

一、安装Docker-ce 1、下载阿里云的repo源 [rootlocalhost ~]# yum install yum-utils -y && yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo && yum makecache # 尝试列出 docker-ce 的版本 [rootlocalh…...

Ajax学习笔记,第一节:语法基础

Ajax学习笔记&#xff0c;第一节&#xff1a;语法基础 一、概念 1、什么是Ajax 使用浏览器的 XMLHttpRequest 对象 与服务器通信2、什么是axios Axios是一个基于Promise的JavaScript库&#xff0c;支持在浏览器和Node.js环境中使用。相较于Ajax&#xff0c;Axios提供了更多…...

《用Python画蔡徐坤:艺术与编程的结合》

简介 大家好&#xff01;今天带来一篇有趣的Python编程项目&#xff0c;用代码画出知名偶像蔡徐坤的形象。这个项目使用了Python的turtle库&#xff0c;通过简单的几何图形和精心设计的代码来展示艺术与编程的结合。 以下是完整的代码和效果介绍&#xff0c;快来试试看吧&…...

Unity中动态生成贴图并保存成png图片实现

实现原理&#xff1a; 要生成长x宽y的贴图&#xff0c;就是生成x*y个像素填充到贴图中&#xff0c;如下图&#xff1a; 如果要改变局部颜色&#xff0c;就是从x1到x2(x1<x2),y1到y2(y1<y2)这个范围做处理&#xff0c; 或者要想做圆形就是计算距某个点&#xff08;x1,y1&…...

Mac配置maven环境及在IDEA中配置Maven

Mac配置maven环境及在IDEA中配置Maven 1. 介绍 Maven是一款广泛用于Java等JVM语言项目的工具&#xff0c;它以项目对象模型&#xff08;POM&#xff09;为基础进行项目管理&#xff0c;通过POM文件来定义项目信息和依赖关系。同时&#xff0c;它也是构建自动化工具&#xff0…...

Reactor 模式的理论与实践

1. 引言 1.1 什么是 Reactor 模式&#xff1f; Reactor 模式是一种用于处理高性能 I/O 的设计模式&#xff0c;专注于通过非阻塞 I/O 和事件驱动机制实现高并发性能。它的核心思想是将 I/O 操作的事件分离出来&#xff0c;通过事件分发器&#xff08;Reactor&#xff09;将事…...

vim 一次注释多行 的几种方法

在 Vim 中一次注释多行是一个常见操作。可以使用以下方法根据你的具体需求选择合适的方式&#xff1a; 方法 1&#xff1a;手动插入注释符 进入正常模式&#xff1a; 按 Esc 确保进入正常模式。 选择需要注释的多行&#xff1a; 移动到第一行&#xff0c;按下 Ctrlv 进入可视块…...

问题记录-Java后端

问题记录 目录 问题记录1.多数据源使用事务注意事项&#xff1f;2.mybatis执行MySQL的存储过程&#xff1f;3.springBoot加载不到nacos配置中心的配置问题4.服务器产生大量close_wait情况 1.多数据源使用事务注意事项&#xff1f; 问题&#xff1a;在springBoot项目中多表处理数…...

李春葆《数据结构》-课后习题代码题

一&#xff1a;假设不带权有向图采用邻接矩阵 g 存储&#xff0c;设计实现以下功能的算法&#xff1a; &#xff08;1&#xff09;求出图中每个顶点的入度。 代码&#xff1a; void indegree(MatGraph g){int i,j,n;printf("各个顶点的入度&#xff1a;\n");for(i…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...