当前位置: 首页 > news >正文

Mongo数据库 --- Mongo Pipeline

Mongo数据库 --- Mongo Pipeline

  • 什么是Mongo Pipeline
  • Mongo Pipeline常用的几个Stage
  • Explanation with example:
    • MongoDB $match
    • MongoDB $project
    • MongoDB $group
    • MongoDB $unwind
    • MongoDB $count
    • MongoDB $addFields
  • Some Query Examples
  • 在C#中使用Aggreagtion Pipeline
    • **方法一: 使用RawBsonDocument**
    • 使用 Fluent API

什么是Mongo Pipeline

  • 在MongoDB中,聚合管道(aggregation pipeline)是一种用于处理和转换数据的机制。它允许您按顺序对集合中的文档执行一系列操作,并将结果从一个阶段传递到下一个阶段。聚合管道由多个阶段组成,每个阶段在输入文档上执行特定的操作,并生成转换后的输出,作为下一个阶段的输入。
  • 聚合管道中的每个阶段接收输入文档,并应用某种操作,例如过滤、分组、投影或排序,以生成一组修改后的文档。一个阶段的输出成为下一个阶段的输入,形成了一个数据处理的管道流程.
  • 聚合管道提供了一种强大而灵活的方式来执行复杂的数据处理任务,例如过滤、分组、排序、连接和聚合数据,所有这些都可以在MongoDB查询框架内完成。它能够高效地处理大型数据集,并提供了一种方便的方式来在返回结果之前对数据进行形状和操作
  • MongoDB的聚合管道(aggregation pipeline)是在MongoDB服务器上执行的。聚合管道操作在服务器端进行,而不是将数据取出并在本地内存中执行

Mongo Pipeline常用的几个Stage

  • $match:根据指定的条件筛选文档,类似于查询中的find操作。可以使用各种条件和表达式进行匹配。
  • $project:重新塑造文档结构,包括选择特定字段、排除字段、创建计算字段、重命名字段等。还可以使用表达式进行计算和转换。
  • $group:按照指定的键对文档进行分组,并对每个组执行聚合操作,如计算总和、平均值、计数等。可以进行多字段分组和多个聚合操作。
  • $sort:根据指定的字段对文档进行排序,可以指定升序或降序排序。
  • $limit:限制返回结果的文档数量,只保留指定数量的文档。
  • $skip:跳过指定数量的文档,返回剩余的文档。
  • $unwind:将包含数组的字段拆分为多个文档,每个文档包含数组中的一个元素。这在对数组字段进行聚合操作时很有用。
  • $lookup:执行左连接操作,将当前集合中的文档与其他集合中的文档进行关联。可以根据匹配条件将相关文档合并到结果中

Explanation with example:

Example使用以下数据

//University Collection
{country : 'Spain',city : 'Salamanca',name : 'USAL',location : {type : 'Point',coordinates : [ -5.6722512,17, 40.9607792 ]},students : [{ year : 2014, number : 24774 },{ year : 2015, number : 23166 },{ year : 2016, number : 21913 },{ year : 2017, number : 21715 }]
}{country : 'Spain',city : 'Salamanca',name : 'UPSA',location : {type : 'Point',coordinates : [ -5.6691191,17, 40.9631732 ]},students : [{ year : 2014, number : 4788 },{ year : 2015, number : 4821 },{ year : 2016, number : 6550 },{ year : 2017, number : 6125 }]
}
//Course Collection
{university : 'USAL',name : 'Computer Science',level : 'Excellent'
}
{university : 'USAL',name : 'Electronics',level : 'Intermediate'
}
{university : 'USAL',name : 'Communication',level : 'Excellent'
}

MongoDB $match

  • 根据指定的条件筛选文档,类似于查询中的find操作。可以使用各种条件和表达式进行匹配。
db.universities.aggregate([{ $match : { country : 'Spain', city : 'Salamanca' } }
]).pretty()

Output:

{country : 'Spain',city : 'Salamanca',name : 'USAL',location : {type : 'Point',coordinates : [ -5.6722512,17, 40.9607792 ]},students : [{ year : 2014, number : 24774 },{ year : 2015, number : 23166 },{ year : 2016, number : 21913 },{ year : 2017, number : 21715 }]
}{country : 'Spain',city : 'Salamanca',name : 'UPSA',location : {type : 'Point',coordinates : [ -5.6691191,17, 40.9631732 ]},students : [{ year : 2014, number : 4788 },{ year : 2015, number : 4821 },{ year : 2016, number : 6550 },{ year : 2017, number : 6125 }]
}

MongoDB $project

  • 重新塑造文档结构,包括选择特定字段、排除字段、创建计算字段、重命名字段等。还可以使用表达式进行计算和转换
  • In the code that follows, please note that:
  • We must explicitly write _id : 0 when this field is not required
  • Apart from the _id field, it is sufficient to specify only those fields we need to obtain as a result of the query
db.universities.aggregate([{ $project : { _id : 0, country : 1, city : 1, name : 1 } }
]).pretty()

Output:

{ "country" : "Spain", "city" : "Salamanca", "name" : "USAL" }
{ "country" : "Spain", "city" : "Salamanca", "name" : "UPSA" }

MongoDB $group

  • 按照指定的键对文档进行分组,并对每个组执行聚合操作,如计算总和、平均值、计数等。可以进行多字段分组和多个聚合操作。
//$sum : 1 的意思是计算每个分组中document的数量,$sum : 2 则是doccument数量的两倍
db.universities.aggregate([{ $group : { _id : '$name', totaldocs : { $sum : 1 } } }
]).pretty()

Output:

{ "_id" : "UPSA", "totaldocs" : 1 }
{ "_id" : "USAL", "totaldocs" : 1 }
  • $group支持的operator
  • $count: Calculates the quantity of documents in the given group.
  • $max Displays the maximum value of a document’s field in the collection.
  • $min Displays the minimum value of a document’s field in the collection.
  • $avg Displays the average value of a document’s field in the collection.
  • $sum Sums up the specified values of all documents in the collection.
  • $push Adds extra values into the array of the resulting document.

MongoDB $unwind

  • 将包含数组的字段拆分为多个文档,每个文档包含数组中的一个元素。这在对数组字段进行聚合操作时很有用
db.universities.aggregate([{ $match : { name : 'USAL' } },{ $unwind : '$students' }
]).pretty()
  • unwind students会把每个student记录提取出来和剩下的属性拼起来变成一个独立的dcoument

Input

{country : 'Spain',city : 'Salamanca',name : 'USAL',location : {type : 'Point',coordinates : [ -5.6722512,17, 40.9607792 ]},students : [{ year : 2014, number : 24774 },{ year : 2015, number : 23166 },]
}

Output:

{"_id" : ObjectId("5b7d9d9efbc9884f689cdba9"),"country" : "Spain","city" : "Salamanca","name" : "USAL","location" : {"type" : "Point","coordinates" : [-5.6722512,17,40.9607792]},"students" : {"year" : 2014, "number" : 24774}
}
{"_id" : ObjectId("5b7d9d9efbc9884f689cdba9"),"country" : "Spain","city" : "Salamanca","name" : "USAL","location" : {"type" : "Point","coordinates" : [-5.6722512,17,40.9607792]},"students" : {"year" : 2015,"number" : 23166}
}

MongoDB $count

  • The $count stage provides an easy way to check the number of documents obtained in the output of the previous stages of the pipeline
db.universities.aggregate([{ $unwind : '$students' },{ $count : 'total_documents' }
]).pretty()

Output:

{ "total_documents" : 8 }

MongoDB $addFields

  • It is possible that you need to make some changes to your output in the way of new fields. In the next example, we want to add the year of the foundation of the university.
  • addField 不会修改数据库
db.universities.aggregate([{ $match : { name : 'USAL' } },{ $addFields : { foundation_year : 1218 } }
]).pretty()
{"_id" : ObjectId("5b7d9d9efbc9884f689cdba9"),"country" : "Spain","city" : "Salamanca","name" : "USAL","location" : {"type" : "Point","coordinates" : [-5.6722512,17,40.9607792]},"students" : [{"year" : 2014,"number" : 24774},{"year" : 2015,"number" : 23166},{"year" : 2016,"number" : 21913},{"year" : 2017,"number" : 21715}],"foundation_year" : 1218
}

Some Query Examples

db.collection.aggregate([{ $match: { age: { $gt: 30 } } }
])
db.collection.aggregate([{ $group: { _id: "$category", total: { $sum: "$quantity" } } }
])
//This example selects the "name" field and creates a new field called "fullName" 
//by concatenating the "firstName" and "lastName" fields.
db.collection.aggregate([{ $project: { _id: 0, name: 1, fullName: { $concat: ["$firstName", " ", "$lastName"] } } }
])
//This example sorts documents in descending order based on the "age" field.
db.collection.aggregate([{ $sort: { age: -1 } }
])
//This example limits the output to only the first 10 documents.
db.collection.aggregate([{ $limit: 10 }
])

在C#中使用Aggreagtion Pipeline

方法一: 使用RawBsonDocument

BsonDocument pipelineStage1 = new BsonDocument{{"$match", new BsonDocument{{ "username", "nraboy" }}}
};BsonDocument pipelineStage2 = new BsonDocument{{ "$project", new BsonDocument{{ "_id", 1 },{ "username", 1 },{ "items", new BsonDocument{{"$map", new BsonDocument{{ "input", "$items" },{ "as", "item" },{"in", new BsonDocument{{"$convert", new BsonDocument{{ "input", "$$item" },{ "to", "objectId" }}}}}}}}}}}
};BsonDocument pipelineStage3 = new BsonDocument{{"$lookup", new BsonDocument{{ "from", "movies" },{ "localField", "items" },{ "foreignField", "_id" },{ "as", "movies" }}}
};BsonDocument pipelineStage4 = new BsonDocument{{ "$unwind", "$movies" }
};BsonDocument pipelineStage5 = new BsonDocument{{"$group", new BsonDocument{{ "_id", "$_id" },{ "username", new BsonDocument{{ "$first", "$username" }} },{ "movies", new BsonDocument{{ "$addToSet", "$movies" }}}}}
};BsonDocument[] pipeline = new BsonDocument[] { pipelineStage1, pipelineStage2, pipelineStage3, pipelineStage4, pipelineStage5 
};List<BsonDocument> pResults = playlistCollection.Aggregate<BsonDocument>(pipeline).ToList();foreach(BsonDocument pResult in pResults) {Console.WriteLine(pResult);
}

使用 Fluent API

var pResults = playlistCollection.Aggregate().Match(new BsonDocument{{ "username", "nraboy" }}).Project(new BsonDocument{{ "_id", 1 },{ "username", 1 },{"items", new BsonDocument{{"$map", new BsonDocument{{ "input", "$items" },{ "as", "item" },{"in", new BsonDocument{{"$convert", new BsonDocument{{ "input", "$$item" },{ "to", "objectId" }}}}}}}}}}).Lookup("movies", "items", "_id", "movies").Unwind("movies").Group(new BsonDocument{{ "_id", "$_id" },{"username", new BsonDocument{{ "$first", "$username" }}},{"movies", new BsonDocument{{ "$addToSet", "$movies" }}}}).ToList();foreach(var pResult in pResults) {Console.WriteLine(pResult);
}

相关文章:

Mongo数据库 --- Mongo Pipeline

Mongo数据库 --- Mongo Pipeline 什么是Mongo PipelineMongo Pipeline常用的几个StageExplanation with example:MongoDB $matchMongoDB $projectMongoDB $groupMongoDB $unwindMongoDB $countMongoDB $addFields Some Query Examples在C#中使用Aggreagtion Pipeline**方法一: …...

Adobe Illustrator 2024 安装教程与下载分享

介绍一下 下载直接看文章末尾 Adobe Illustrator 是一款由Adobe Systems开发的矢量图形编辑软件。它广泛应用于创建和编辑矢量图形、插图、徽标、图标、排版和广告等领域。以下是Adobe Illustrator的一些主要特点和功能&#xff1a; 矢量绘图&#xff1a;Illustrator使用矢量…...

javax.xml.ws.soap.SOAPFaultException: ZONE_OFFSET

javax.xml.ws.soap.SOAPFaultException 表示 SOAP 调用过程中发生了错误&#xff0c;并且服务端返回了一个 SOAP Fault。 错误信息中提到的 ZONE_OFFSET 可能指的是时区偏移量。在日期和时间处理中&#xff0c;时区偏移量是指格林威治标准时间 (GMT) 的偏移量。如果服务期望特…...

常用的数据结构

队列(FIFO) 栈(LIFO) 链表 hash表 hash冲突处理 开放式寻址 线性探测 表示依次检查索引为 hash(key) + 1、hash(key) + 2 ... 的位置。i 是冲突后的探查步数。公式:hash(i) = (hash(key) + i) % TableSize二次探查 规则:冲突后探查的步长是平方递增的,例如,检查位置为 hash…...

javaweb-day01-html和css初识

html:超文本标记语言 CSS&#xff1a;层叠样式表 1.html实现新浪新闻页面 1.1 标题排版 效果图&#xff1a; 1.2 标题颜色样式 1.3 标签内颜色样式 1.4设置超链接 1.5 正文排版 1.6 页面布局–盒子 &#xff08;1&#xff09;盒子模型 &#xff08;2&#xff09;页面布局…...

C++11特性(详解)

目录 1.C11简介 2.列表初始化 3.声明 1.auto 2.decltype 3.nullptr 4.范围for循环 5.智能指针 6.STL的一些变化 7.右值引用和移动语义 1.左值引用和右值引用 2.左值引用和右值引用的比较 3.右值引用的使用场景和意义 4.右值引用引用左值及其一些更深入的使用场景分…...

基于Springboot的心灵治愈交流平台系统的设计与实现

基于Springboot的心灵治愈交流平台系统 介绍 基于Springboot的心灵治愈交流平台系统&#xff0c;后端框架使用Springboot和mybatis&#xff0c;前端框架使用Vuehrml&#xff0c;数据库使用mysql&#xff0c;使用B/S架构实现前台用户系统和后台管理员系统&#xff0c;和不同级别…...

初识java(2)

大家好&#xff0c;今天我们来讲讲java中的数据类型。 java跟我们的c语言的数据类型有一些差别&#xff0c;那么接下来我们就来看看。 一.字面常量&#xff0c;其中&#xff1a;199&#xff0c;3.14&#xff0c;‘a’&#xff0c;true都是常量将其称为字面常量。&#xff08;…...

AIGC--AIGC与人机协作:新的创作模式

AIGC与人机协作&#xff1a;新的创作模式 引言 人工智能生成内容&#xff08;AIGC&#xff09;正在以惊人的速度渗透到创作的各个领域。从生成文本、音乐、到图像和视频&#xff0c;AIGC使得创作过程变得更加快捷和高效。然而&#xff0c;AIGC并非完全取代了人类的创作角色&am…...

Wonder3D本地部署到算家云搭建详细教程

Wonder3D简介 Wonder3D仅需2至3分钟即可从单视图图像中重建出高度详细的纹理网格。Wonder3D首先通过跨域扩散模型生成一致的多视图法线图与相应的彩色图像&#xff0c;然后利用一种新颖的法线融合方法实现快速且高质量的重建。 本文详细介绍了在算家云搭建Wonder3D的流程以及…...

【设计模式】【行为型模式(Behavioral Patterns)】之状态模式(State Pattern)

1. 设计模式原理说明 状态模式&#xff08;State Pattern&#xff09; 是一种行为设计模式&#xff0c;它允许对象在其内部状态发生变化时改变其行为。这个模式的核心思想是使用不同的类来表示不同的状态&#xff0c;每个状态类都封装了与该状态相关的特定行为。当对象的状态发…...

QML学习 —— 34、视频媒体播放器(附源码)

效果 说明 您可以单独使用MediaPlayer播放音频内容(如音频),也可以将其与VideoOutput结合使用以渲染视频。VideoOutput项支持未转换、拉伸和均匀缩放的视频演示。有关拉伸均匀缩放演示文稿的描述,请参见fillMode属性描述。 播放可能出错问题 出现的问题:      DirectS…...

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!

【深度学习|特征增强模块】FFN&#xff08;前馈神经网络&#xff09;和E_FFN&#xff08;增强型前馈神经网络&#xff09;是transformer特征增强的重要组成部分&#xff01; 【深度学习|特征增强模块】FFN&#xff08;前馈神经网络&#xff09;和E_FFN&#xff08;增强型前馈神…...

【Qt】控件7

1.QTextEdit的简单使用 使用简单的QTextEdit,获取到的内容显示到标签上 使用textChanged信号 在槽函数中需要获取QTextEdit的内容&#xff0c;对应操作是&#xff1a; QString curorui->textEdit->toPlainText();然后显示到标签上&#xff0c;对应操作是&#xff1a; …...

F12抓包14_修改网页图片网页保存到本地

课程大纲 1、修改网页图片&#xff08;2种方式二选一&#xff09; 修改网页图片&#xff0c;需要定位到图片标签&#xff0c;修改<img>标签的属性。2种方法&#xff1a; 1. 修改为网络图片url。缺点&#xff1a;url失效&#xff0c;图片无法显示。 2. 修改为图片base64&a…...

源代码检测,内附实际案例

源代码安全审计是依据国标GB/T 34944-2017、GB/T 34944-2017&#xff0c;结合专业源代码扫描工具对各种程序语言编写的源代码进行安全审计。能够为客户提供包括安全编码规范咨询、源代码安全现状评测、定位源代码中存在的安全漏洞、分析漏洞风险、给出修改建议等一系列服务。 源…...

1138:将字符串中的小写字母转换成大写字母

【题目描述】 给定一个字符串&#xff0c;将其中所有的小写字母转换成大写字母。 【输入】 输入一行&#xff0c;包含一个字符串&#xff08;长度不超过100&#xff0c;可能包含空格&#xff09;。 【输出】 输出转换后的字符串。 【输入样例】 helloworld123Ha 【输出样例】…...

《C++ 人工智能模型邂逅云平台:集成之路的策略与要点全解析》

在当今数字化浪潮汹涌澎湃的时代&#xff0c;人工智能无疑是引领技术变革的核心力量。而 C以其卓越的性能和高效的资源利用&#xff0c;成为开发人工智能模型的有力武器。与此同时&#xff0c;云平台所提供的强大计算能力、灵活的存储资源以及便捷的服务部署&#xff0c;为人工…...

【ArcGISPro】Sentinel-2数据处理

错误 默认拉进去只组织了4个波段,但是实际有12个波段 解决方案 数据下载 Sentinel-2 数据下载-CSDN博客 数据处理 数据查看 创建镶嵌数据集 在数据管理工具箱中找到创建镶嵌数据集...

Unity中的简易TCP服务器/客户端

在本文中&#xff0c;我将向你介绍一个在Unity中实现的简单TCP服务器脚本,和一个简单的客户端脚本. 脚本 MyTcpServer 允许Unity应用创建一个TCP服务器&#xff0c;监听客户端的连接、异步处理客户端消息&#xff0c;并通过事件与Unity应用中的其他模块进行通信。 MyTcpServe…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...