当前位置: 首页 > news >正文

7、深入剖析PyTorch nn.Module源码

文章目录

  • 1. 重要类
  • 2. add_modules
  • 3. Apply(fn)
  • 4. register_buffer
  • 5. nn.Parameters®ister_parameters
  • 6. 后续测试

1. 重要类

  • nn.module --> 所有神经网络的父类,自定义神经网络需要继承此类,并且自定义__init__,forward函数即可:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :MyModelNet.py
# @Time      :2024/11/20 13:38
# @Author    :Jason Zhang
import torch
from torch import nnclass NeuralNetwork(nn.Module):def __init__(self):super(NeuralNetwork,self).__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28 * 28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logitsif __name__ == "__main__":run_code = 0x_row = 28x_column = 28x_total = x_row * x_columnx = torch.arange(x_total, dtype=torch.float).reshape((1, x_row, x_column))my_net = NeuralNetwork()y = my_net(x)print(f"y.shape={y.shape}")print(my_net)
  • 结果:
y.shape=torch.Size([1, 10])
NeuralNetwork((flatten): Flatten(start_dim=1, end_dim=-1)(linear_relu_stack): Sequential((0): Linear(in_features=784, out_features=512, bias=True)(1): ReLU()(2): Linear(in_features=512, out_features=512, bias=True)(3): ReLU()(4): Linear(in_features=512, out_features=10, bias=True))
)

2. add_modules

通过add_modules在旧的网络里面添加新的网络

  • 重点: 用nn.ModuleList自带的insert,新的网络继承自老网络中,直接用按位置插入
  • python
import torch
from torch import nn
from pytorch_model_summary import summarytorch.manual_seed(2323)class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.flatten = nn.Flatten()self.block = nn.ModuleList([nn.Linear(28 * 28, 512),nn.ReLU(),nn.Linear(512, 10)])def forward(self, x):x = self.flatten(x)for layer in self.block:x = layer(x)return xclass MyNewNet(MyModel):def __init__(self):super(MyNewNet, self).__init__()self.block.insert(2, nn.Linear(512, 256))  # 插入新层self.block.insert(3, nn.ReLU())  # 插入新的激活函数self.block.insert(4, nn.Linear(256, 512))  # 插入另一层self.block.insert(5, nn.ReLU())  # 插入激活函数if __name__ == "__main__":# 测试原始模型my_model = MyModel()print("Original Model:")print(summary(my_model, torch.ones((1, 28, 28))))# 测试新模型my_new_model = MyNewNet()print("\nNew Model:")print(summary(my_new_model, torch.ones((1, 28, 28))))
  • 结果:
Original Model:
-----------------------------------------------------------------------Layer (type)        Output Shape         Param #     Tr. Param #
=======================================================================Flatten-1            [1, 784]               0               0Linear-2            [1, 512]         401,920         401,920ReLU-3            [1, 512]               0               0Linear-4             [1, 10]           5,130           5,130
=======================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
-----------------------------------------------------------------------New Model:
-----------------------------------------------------------------------Layer (type)        Output Shape         Param #     Tr. Param #
=======================================================================Flatten-1            [1, 784]               0               0Linear-2            [1, 512]         401,920         401,920ReLU-3            [1, 512]               0               0Linear-4            [1, 256]         131,328         131,328ReLU-5            [1, 256]               0               0Linear-6            [1, 512]         131,584         131,584ReLU-7            [1, 512]               0               0Linear-8             [1, 10]           5,130           5,130
=======================================================================
Total params: 669,962
Trainable params: 669,962
Non-trainable params: 0
-----------------------------------------------------------------------

3. Apply(fn)

模型权重weight,bias 的初始化

  • python
import torch.nn as nn
import torchclass MyAwesomeModel(nn.Module):def __init__(self):super(MyAwesomeModel, self).__init__()self.fc1 = nn.Linear(3, 4)self.fc2 = nn.Linear(4, 5)self.fc3 = nn.Linear(5, 6)# 定义初始化函数
@torch.no_grad()
def init_weights(m):print(m)if type(m) == nn.Linear:m.weight.fill_(1.0)print(m.weight)# 创建神经网络实例
model = MyAwesomeModel()# 应用初始化权值函数到神经网络上
model.apply(init_weights)
  • 结果:
Linear(in_features=3, out_features=4, bias=True)
Parameter containing:
tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]], requires_grad=True)
Linear(in_features=4, out_features=5, bias=True)
Parameter containing:
tensor([[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]], requires_grad=True)
Linear(in_features=5, out_features=6, bias=True)
Parameter containing:
tensor([[1., 1., 1., 1., 1.],[1., 1., 1., 1., 1.],[1., 1., 1., 1., 1.],[1., 1., 1., 1., 1.],[1., 1., 1., 1., 1.],[1., 1., 1., 1., 1.]], requires_grad=True)
MyAwesomeModel((fc1): Linear(in_features=3, out_features=4, bias=True)(fc2): Linear(in_features=4, out_features=5, bias=True)(fc3): Linear(in_features=5, out_features=6, bias=True)
)Process finished with exit code 0

4. register_buffer

将模型中添加常数项。比如加1

  • python:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :RegisterBuffer.py
# @Time      :2024/11/23 19:21
# @Author    :Jason Zhang
import torch
from torch import nnclass MyNet(nn.Module):def __init__(self):super(MyNet, self).__init__()self.register_buffer("my_buffer_a", torch.ones(2, 3))def forward(self, x):x = x + self.my_buffer_areturn xif __name__ == "__main__":run_code = 0my_test = MyNet()in_x = torch.arange(6).reshape((2, 3))y = my_test(in_x)print(f"x=\n{in_x}")print(f"y=\n{y}")
  • 结果:
x=
tensor([[0, 1, 2],[3, 4, 5]])
y=
tensor([[1., 2., 3.],[4., 5., 6.]])

5. nn.Parameters&register_parameters

  • python
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :ParameterTest.py
# @Time      :2024/11/23 19:37
# @Author    :Jason Zhang
import torch
from torch import nnclass MyModule(nn.Module):def __init__(self, in_size, out_size):self.in_size = in_sizeself.out_size = out_sizesuper(MyModule, self).__init__()self.test = torch.rand(self.in_size, self.out_size)self.linear = nn.Linear(self.in_size, self.out_size)def forward(self, x):x = self.linear(x)return xclass MyModuleRegister(nn.Module):def __init__(self, in_size, out_size):self.in_size = in_sizeself.out_size = out_sizesuper(MyModuleRegister, self).__init__()self.test = torch.rand(self.in_size, self.out_size)self.linear = nn.Linear(self.in_size, self.out_size)def forward(self, x):x = self.linear(x)return xclass MyModulePara(nn.Module):def __init__(self, in_size, out_size):self.in_size = in_sizeself.out_size = out_sizesuper(MyModulePara, self).__init__()self.test = nn.Parameter(torch.rand(self.in_size, self.out_size))self.linear = nn.Linear(self.in_size, self.out_size)def forward(self, x):x = self.linear(x)return xif __name__ == "__main__":run_code = 0test_in = 4test_out = 6my_test = MyModule(test_in, test_out)my_test_para = MyModulePara(test_in, test_out)test_list = list(my_test.named_parameters())test_list_para = list(my_test_para.named_parameters())my_test_register = MyModuleRegister(test_in, test_out)para_register = nn.Parameter(torch.rand(test_in, test_out))my_test_register.register_parameter('para_add_register', para_register)test_list_para_register = list(my_test_register.named_parameters())print(f"*" * 50)print(f"test_list=\n{test_list}")print(f"*" * 50)print(f"*" * 50)print(f"test_list_para=\n{test_list_para}")print(f"*" * 50)print(f"*" * 50)print(f"test_list_para_register=\n{test_list_para_register}")print(f"*" * 50)
  • 结果:
**************************************************
test_list=
[('linear.weight', Parameter containing:
tensor([[ 0.3805, -0.3368,  0.2348,  0.4525],[-0.4557, -0.3344,  0.1368, -0.3471],[-0.3961,  0.3302,  0.1904, -0.0111],[ 0.4542, -0.3325, -0.3782,  0.0376],[ 0.2083, -0.3113, -0.3447, -0.1503],[ 0.0343,  0.0410, -0.4216, -0.4793]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([-0.3465, -0.4510,  0.4919,  0.1967, -0.1366, -0.2496],requires_grad=True))]
**************************************************
**************************************************
test_list_para=
[('test', Parameter containing:
tensor([[0.1353, 0.9934, 0.0462, 0.2103, 0.3410, 0.0814],[0.7509, 0.2573, 0.8030, 0.0952, 0.1381, 0.5360],[0.1972, 0.1241, 0.5597, 0.2691, 0.3226, 0.0660],[0.3333, 0.8031, 0.9226, 0.4290, 0.3660, 0.6159]], requires_grad=True)), ('linear.weight', Parameter containing:
tensor([[-0.0633, -0.4030, -0.4962,  0.1928],[-0.1707,  0.2259,  0.0373, -0.0317],[ 0.4523,  0.2439, -0.1376, -0.3323],[ 0.3215,  0.1283,  0.0729,  0.3912],[ 0.0262, -0.1087,  0.4721, -0.1661],[-0.1055, -0.2199, -0.4974, -0.3444]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([ 0.3702, -0.0142, -0.2098, -0.0910, -0.2323, -0.0546],requires_grad=True))]
**************************************************
**************************************************
test_list_para_register=
[('para_add_register', Parameter containing:
tensor([[0.2428, 0.1388, 0.6612, 0.4215, 0.0215, 0.2618],[0.4234, 0.0160, 0.8947, 0.4784, 0.4403, 0.4800],[0.8845, 0.1469, 0.6894, 0.7050, 0.5911, 0.7702],[0.7694, 0.0491, 0.3583, 0.4451, 0.2282, 0.4293]], requires_grad=True)), ('linear.weight', Parameter containing:
tensor([[ 0.1358, -0.4704, -0.4181, -0.4504],[ 0.0903,  0.3235, -0.3164, -0.4163],[ 0.1342,  0.3108,  0.0612, -0.2910],[ 0.3527,  0.3397, -0.0414, -0.0408],[-0.4877,  0.1925, -0.2912, -0.2239],[-0.0081, -0.1730,  0.0921, -0.4210]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([-0.2194,  0.2233, -0.4950, -0.3260, -0.0206, -0.0197],requires_grad=True))]
**************************************************

6. 后续测试

  • register_module
  • get_submodule
  • get_parameter

相关文章:

7、深入剖析PyTorch nn.Module源码

文章目录 1. 重要类2. add_modules3. Apply(fn)4. register_buffer5. nn.Parametersister_parameters6. 后续测试 1. 重要类 nn.module --> 所有神经网络的父类,自定义神经网络需要继承此类,并且自定义__init__,forward函数即可: #!/usr…...

如何提升编程能力第二篇

如何提升编程能力2 1. 引言2. 掌握理论基础2.1 理解编程语言的核心2.2 数据结构与算法2.3 计算机基础与系统设计3.1 多写代码3.2 参与开源项目3.3 开发自己的项目 4. 提高代码质量4.1 代码风格与可读性4.2 测试驱动开发 1. 引言 编程是推动现代科技发展的核心技能,…...

问:SpringBoot核心配置文件都有啥,怎么配?

在SpringBoot的开发过程中,核心配置文件扮演着至关重要的角色。这些文件用于配置应用程序的各种属性和环境设置,使得开发者能够灵活地定制和管理应用程序的行为。本文将探讨SpringBoot的核心配置文件,包括它们的作用、区别,并通过…...

RHCSA作业

课后练习 将整个 /etc 目录下的文件全部打包并用 gzip 压缩成/back/etcback.tar.gz [rootlocalhost ~]# tar -czvf /back/etcback.tar.gz -C / etc 使当前用户永久生效的命令别名:写一个命令命为hello,实现的功能为每输入一次hello命令,就有hello&#…...

ESP32学习笔记_FreeRTOS(3)——SoftwareTimer

摘要(From AI): 这篇笔记全面介绍了 FreeRTOS 软件定时器的核心概念和使用方法,包括定时器的创建、管理、常用 API 和辅助函数,并通过示例代码演示了如何启动、重置和更改定时器的周期。它强调了软件定时器的灵活性、平台无关性以及与硬件定时器的对比 …...

文心一言与千帆大模型平台的区别:探索百度AI生态的双子星

随着人工智能技术的迅猛发展,越来越多的公司开始投入资源开发自己的AI解决方案。在中国,百度作为互联网巨头之一,不仅在搜索引擎领域占据重要位置,还在AI领域取得了显著成就。其中,“文心一言”和“千帆大模型平台”便…...

【c语言】文件操作详解 - 从打开到关闭

文章目录 1. 为什么使用文件?2. 什么是文件?3. 如何标识文件?4. 二进制文件和文本文件?5. 文件的打开和关闭5.1 流和标准流5.1.1 流5.1.2 标准流 5.2 文件指针5.3 文件的打开和关闭 6. 文件的读写顺序6.1 顺序读写函数6.2 对比一组…...

Flink Sink的使用

经过一系列Transformation转换操作后,最后一定要调用Sink操作,才会形成一个完整的DataFlow拓扑。只有调用了Sink操作,才会产生最终的计算结果,这些数据可以写入到的文件、输出到指定的网络端口、消息中间件、外部的文件系统或者是…...

pcl::PointCloud<PointType>::Ptr extractedCloud; 尖括号里的值表示什么含义?

在C中&#xff0c;pcl::PointCloud<PointType>::Ptr是一种智能指针&#xff0c;它是Point Cloud Library (PCL)中用于管理pcl::PointCloud对象的智能指针类型。这里的<pcl::PointCloud<PointType>::Ptr>尖括号里的值表示智能指针所指向的对象类型。 让我们分…...

《基于FPGA的便携式PWM方波信号发生器》论文分析(三)——数码管稳定显示与系统调试

一、论文概述 基于FPGA的便携式PWM方波信号发生器是一篇由任青颖、庹忠曜、黄洵桢、李智禺和张贤宇 等人发表的一篇期刊论文。该论文主要研究了一种新型的信号发生器&#xff0c;旨在解决传统PWM信号发生器在移动设备信号调控中存在的精准度低和便携性差的问题 。其基于现场可编…...

VsCode 插件推荐(个人常用)

VsCode 插件推荐&#xff08;个人常用&#xff09;...

路由策略与路由控制实验

AR1、AR2、AR3在互联接口、Loopback0接口上激活OSPF。AR3、AR4属于IS-IS Area 49.0001&#xff0c;这两者都是Level-1路由器&#xff0c;AR3、AR4的系统ID采用0000.0000.000x格式&#xff0c;其中x为设备编号 AR1上存在三个业务网段A、B、C&#xff08;分别用Loopback1、2、3接…...

训练的decoder模型文本长度不一致,一般设置为多大合适,需要覆盖最长的文本长度么

在训练解码器模型时,文本长度不一致是常见的情况,需要根据任务的特性和数据集的长度分布来设置合理的最大长度 (max_length)。以下是一些指导原则,帮助你设置合适的最大长度: 1. 是否需要覆盖最长文本长度 覆盖最长文本长度: 如果任务对完整性要求很高(例如生成数学公式、…...

过滤条件包含 OR 谓词,如何进行查询优化——OceanBase SQL 优化实践

这篇博客涉及两个点&#xff0c;一个是 “OR Expansion 改写”&#xff0c;另一个是 “基于代价的改写”。 背景 在写SQL查询时&#xff0c;难以避免在过滤条件中使用 OR 谓词&#xff0c;但其往往会导致索引利用效率下降的问题 。本文将分享如何通过查询改写的2种方式进行优化…...

通过异步使用消息队列优化秒杀

通过异步使用消息队列优化秒杀 同步秒杀流程异步优化秒杀异步秒杀流程基于lua脚本保证Redis操作原子性代码实现阻塞队列的缺点 同步秒杀流程 public Result seckillVoucher(Long voucherId) throws InterruptedException {SeckillVoucher seckillVoucher iSeckillVoucherServi…...

AI产业告别“独奏”时代,“天翼云息壤杯”高校AI大赛奏响产学研“交响乐”

文 | 智能相对论 作者 | 陈泊丞 人工智能产业正在从“独奏”时代进入“大合奏”时代。 在早期的AI发展阶段&#xff0c;AI应用主要集中在少数几个领域&#xff0c;如语音识别、图像处理等。这些领域的研究和开发工作往往由少数几家公司或研究机构即可独立完成&#xff0c;犹…...

Hot100 - 字母异位词分组

Hot100 - 字母异位词分组 最佳思路&#xff1a;排序 时间复杂度&#xff1a; O(nmlogm)&#xff0c;其中 n 为 strs 数组的长度&#xff0c;m 为每个字符串的长度。 代码&#xff1a; class Solution {public List<List<String>> groupAnagrams(String[] strs) …...

力扣hot100-->排序

排序 1. 56. 合并区间 中等 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中的所有区间 。 示例 1&#xff1a; 输…...

【VRChat 全身动捕】VIVE 手柄改 tracker 定位器教程,低成本光学动捕解决方案(持续更新中2024.11.26)

更新 0.0.1&#xff08;2024/11/26&#xff09;&#xff1a; 1.解决了内建蓝牙无法识别、“steamVR 蓝牙不可用” 的解决方案 2.解决了 tracker 虽然建立了连接但是在 steamVR 界面上看不到的问题 3.解决了 VIVE 基站1.0 无法被蓝牙识别 && 无法被 steamVR 搜索到 &…...

【Nginx】核心概念与安装配置解释

文章目录 1. 概述2. 核心概念2.1.Http服务器2.2.反向代理2.3. 负载均衡 3. 安装与配置3.1.安装3.2.配置文件解释3.2.1.全局配置块3.2.2.HTTP 配置块3.2.3.Server 块3.2.4.Location 块3.2.5.upstream3.2.6. mine.type文件 3.3.多虚拟主机配置 4. 总结 1. 概述 Nginx是我们常用的…...

Qt界面篇:QMessageBox高级用法

1、演示效果 2、用法注意 2.1 设置图标 用于显示实际图标的pixmap取决于当前的GUI样式。也可以通过设置icon pixmap属性为图标设置自定义pixmap。 QMessageBox::Icon icon(...

【二叉树】【2.1遍历二叉树】【刷题笔记】【灵神题单】

关注二叉树的三个问题&#xff1a; 什么情况适合自顶向下&#xff1f;什么时候适合用自底向上&#xff1f;一般来说&#xff0c;DFS的递归边界是空节点&#xff0c;什么情况下要额外把叶子节点作为递归边界&#xff1f;在什么情况下&#xff0c;DFS需要有返回值&#xff1f;什…...

Mongo数据库 --- Mongo Pipeline

Mongo数据库 --- Mongo Pipeline 什么是Mongo PipelineMongo Pipeline常用的几个StageExplanation with example:MongoDB $matchMongoDB $projectMongoDB $groupMongoDB $unwindMongoDB $countMongoDB $addFields Some Query Examples在C#中使用Aggreagtion Pipeline**方法一: …...

Adobe Illustrator 2024 安装教程与下载分享

介绍一下 下载直接看文章末尾 Adobe Illustrator 是一款由Adobe Systems开发的矢量图形编辑软件。它广泛应用于创建和编辑矢量图形、插图、徽标、图标、排版和广告等领域。以下是Adobe Illustrator的一些主要特点和功能&#xff1a; 矢量绘图&#xff1a;Illustrator使用矢量…...

javax.xml.ws.soap.SOAPFaultException: ZONE_OFFSET

javax.xml.ws.soap.SOAPFaultException 表示 SOAP 调用过程中发生了错误&#xff0c;并且服务端返回了一个 SOAP Fault。 错误信息中提到的 ZONE_OFFSET 可能指的是时区偏移量。在日期和时间处理中&#xff0c;时区偏移量是指格林威治标准时间 (GMT) 的偏移量。如果服务期望特…...

常用的数据结构

队列(FIFO) 栈(LIFO) 链表 hash表 hash冲突处理 开放式寻址 线性探测 表示依次检查索引为 hash(key) + 1、hash(key) + 2 ... 的位置。i 是冲突后的探查步数。公式:hash(i) = (hash(key) + i) % TableSize二次探查 规则:冲突后探查的步长是平方递增的,例如,检查位置为 hash…...

javaweb-day01-html和css初识

html:超文本标记语言 CSS&#xff1a;层叠样式表 1.html实现新浪新闻页面 1.1 标题排版 效果图&#xff1a; 1.2 标题颜色样式 1.3 标签内颜色样式 1.4设置超链接 1.5 正文排版 1.6 页面布局–盒子 &#xff08;1&#xff09;盒子模型 &#xff08;2&#xff09;页面布局…...

C++11特性(详解)

目录 1.C11简介 2.列表初始化 3.声明 1.auto 2.decltype 3.nullptr 4.范围for循环 5.智能指针 6.STL的一些变化 7.右值引用和移动语义 1.左值引用和右值引用 2.左值引用和右值引用的比较 3.右值引用的使用场景和意义 4.右值引用引用左值及其一些更深入的使用场景分…...

基于Springboot的心灵治愈交流平台系统的设计与实现

基于Springboot的心灵治愈交流平台系统 介绍 基于Springboot的心灵治愈交流平台系统&#xff0c;后端框架使用Springboot和mybatis&#xff0c;前端框架使用Vuehrml&#xff0c;数据库使用mysql&#xff0c;使用B/S架构实现前台用户系统和后台管理员系统&#xff0c;和不同级别…...

初识java(2)

大家好&#xff0c;今天我们来讲讲java中的数据类型。 java跟我们的c语言的数据类型有一些差别&#xff0c;那么接下来我们就来看看。 一.字面常量&#xff0c;其中&#xff1a;199&#xff0c;3.14&#xff0c;‘a’&#xff0c;true都是常量将其称为字面常量。&#xff08;…...

网站页面静态化方案/seo排名优化技术

题目要求第n个丑数。所以对于中间结果不须要保存。def Humble(index):curHum 1M2 2; M3 3; M5 5while index > 1:curHum min(min(M2, M3), M5)while M2 < curHum:M2 * 2while M3 < curHum:M3 * 3while M5 < curHum:M5 * 5index - 1return curHum转载于:https:…...

什么网站做美式软装设计方案/免费行情软件网站大全

8月10日&#xff0c;阿里云发布企业级ECS产品线&#xff0c;在发布会上全新一代基于Skylake25G网络的实例&#xff0c;得到了极大的关注&#xff0c;同时全新一代G5/C5/R5实例已经在青岛地域率先上线&#xff0c;成为中国第一家上线Skylake25G网络的云服务商。 在企业最关注的领…...

如何做网站推广方案/宜兴网站建设

感谢百度上各位IT界朋友的帮助&#xff0c;由于某个软件安装失败&#xff0c;导致ubuntu软件中心软件消失的解决办法&#xff1a; 找百度&#xff0c;有人说&#xff0c; 使用命令:sudo apt-get install software-center输入命令后&#xff0c;提示&#xff1a;software-center…...

网站建设专业术语/客户引流推广方案

MySQL5.7高可用MHAAtlas视频课程9 ?0 n% Y9 N1 X- D( p" N0 D" F7 A3 ?: z Q课程目标/ ~# K1 ?9 l2 m. P掌握企业MySQL常用高可用技术并且和Atlas读写分离结合使用0 u; X \6 p. s M D9 o) ~适用人群1 K& Q. Z7 I3 K5 |7 G8 hLinux运维、DBA、MySQL运维( [ …...

做电影网站哪个系统好/seo外链推广工具下载

1. 题目要求多组输入时&#xff0c; 自己原来常用&#xff1a;while(scanf(“”%d”,&n)!EOF){ if(n0) return 0;else ……; }//其实想这样每输入一个测试数据就输出一个&#xff0c;还有个人想应该会加大程序执行的时间。 新学到的&#xff1a;do{ scanf(“%d”,&n)…...

wordpress上传视频 http错误/郑州seo代理商

Windows Server 2008 产品家族内置提供了虚拟化应用的支持&#xff0c;即Hyper-V&#xff0c;如果您购买的是非without Hyper-V版本的Windows Server 2008 产品&#xff0c;那么会同时提供两个序列号&#xff1a;Physical Key和Virtual Key&#xff0c;正如其名字一样非常容易理…...