kmeans 最佳聚类个数 | 轮廓系数(越大越好)
轮廓系数越大,表示簇内实例之间紧凑,簇间距离大,这正是聚类的标准概念。
- 簇内的样本应该尽可能相似。
- 不同簇之间应该尽可能不相似。
目的:鸢尾花数据进行kmeans聚类,最佳聚类个数是多少?
plot(iris[,1:4], col=iris$Species)
1. 标准化很重要
假设已经知道最佳是3类,
- 使用原始数据做kmeans,和原始标签不一致的很多。
- 如果做了标准化,kmeans的分类结果和原始标签一模一样。
(1). raw dat (错了好多)
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
# 1 2 3
#setosa 0 0 50
#versicolor 48 2 0
#virginica 14 36 0plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$origin, pch=19)
plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$pred, pch=19)
(2). normalized dat (几乎全对)
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t() |> as.data.frame()
head(dat)# 行作为观测值
km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
# 1 2 3
#setosa 50 0 0
#versicolor 0 45 5
#virginica 0 0 50
2. 最佳分类数
(0) 预处理
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t() |> as.data.frame()
head(dat)
(1) factoextra - silhouette: n=2
library(factoextra)
tmp = factoextra::fviz_nbclust( dat, kmeans, method = "silhouette")
#str(tmp)
tmp #图# fviz_nbclust(dat, kmeans, method = "silhouette", k.max = 20)
(2) 碎石图: n=2
# 在一个循环中进行15次的kmeans聚类分析
{
totalwSS=vector(mode = "numeric", 15)
for (i in 1:15){t1= kmeans(dat, i)totalwSS[i] <- t1$tot.withinss
}
# 聚类碎石图 - 使用plot函数绘制total_wss与no-of-clusters的数值。
plot(x=1:15, # x= 类数量, 1 to 15totalwSS, #每个类的total_wss值col="navy", lwd=2,type="b" # 绘制两点,并将它们连接起来
)
}
(3) silhouette 画图: n=2?
逐个画:
# 逐个画轮廓系数
library(cluster)
dis = dist(dat) #行之间的距离
#
n=3
kclu <- kmeans(dat, centers = 3, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, #c("red", "orange", "blue"), main="")#
n=4
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#
#
n=8
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#
批量计算:
silhouette_score <- function(k){km <- kmeans(dat, centers = k, nstart=25)ss <- silhouette(km$cluster, dist(dat))mean(ss[, 3])
}
k <- 2:15
avg_sil <- sapply(k, silhouette_score)
plot(k, avg_sil, type='b',xlab='Number of clusters', ylab='Average Silhouette Scores', frame=FALSE)
最大是2,其次是3类。
根据本文图1,忽略颜色,只看数值分布,确实最佳是2类。
用标准化后的数据呢?
plot(dat, col=iris$Species, main="Normalized data")
plot(dat,main="Normalized data")
结论不变:如果忽略颜色,依旧是很清晰的2类。
(4) pam 是一种更稳定的 kmeans
Partitioning Around Medoids:
Partitioning (clustering) of the data into k clusters “around medoids”, a more robust version of K-means
.
# 最佳分类数:
Ks=sapply(2:15, function(i){summary(silhouette(pam(dat, k=i)))$avg.width
})
plot(2:15,Ks,xlab="k",ylab="av. silhouette",type="b", pch=19)效果:
t1=pam(dat, k=3)
> table(t1$clustering, iris$Species) setosa versicolor virginica1 50 0 02 0 44 03 0 6 50
还是有几个错的。
End
相关文章:
kmeans 最佳聚类个数 | 轮廓系数(越大越好)
轮廓系数越大,表示簇内实例之间紧凑,簇间距离大,这正是聚类的标准概念。 簇内的样本应该尽可能相似。不同簇之间应该尽可能不相似。 目的:鸢尾花数据进行kmeans聚类,最佳聚类个数是多少? plot(iris[,1:4…...
【纪念365天】我的创作纪念日
过去的一年 没有注意加入csdn已经有一年了。 这几天翻看小猴儿的通知才发现时间来到了一年的纪念日。稍稍思索想要将这一段时间的学习到的知识以及偶然遇到的机遇做一下总结。 上一次写纪念日是来到csdn128天的时候, 200天前我的学习状态是非常疯狂的。 只记得我当时…...
Opencv+ROS实现颜色识别应用
目录 一、工具 二、原理 概念 本质 三、实践 添加发布话题 主要代码 四、成果 五、总结 一、工具 opencvros ubuntu18.04 摄像头 二、原理 概念 彩色图像:RGB(红,绿,蓝) HSV图像:H࿰…...
蓝桥杯c++算法秒杀【6】之动态规划【下】(数字三角形、砝码称重(背包问题)、括号序列、异或三角:::非常典型的必刷例题!!!)
别忘了请点个赞收藏关注支持一下博主喵!!!! ! ! ! ! 关注博主,更多蓝桥杯nice题目静待更新:) 动态规划 三、括号序列 【问题描述】 给定一个括号序列,要求尽可能少地添加若干括号使得括号序列变得合…...
C++设计模式(单例模式)
一、介绍 1.动机 在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性、以及良好的效率。 如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例? 这应该是类设计者的…...
前端---CSS(部分用法)
HTML画页面--》这个页面就是页面上需要的元素罗列起来,但是页面效果很差,不好看,为了让页面好看,为了修饰页面---》CSS CSS的作用:修饰HTML页面 用了CSS之后,样式和元素本身做到了分离的效果。---》降低了代…...
2024年最新版Java八股文复习
最新版本Java八股文复习,每天更新一篇,博主正在持续努力更新中~~~ 一、Java基础篇1、怎么理解面向对象?简单说说封装、继承、多态三大特性?2、多态体现在哪几个方面?3、面向对象的设计原则你知道有哪些吗?4…...
计算机毕业设计Hadoop+Spark音乐推荐系统 音乐预测系统 音乐可视化大屏 音乐爬虫 HDFS hive数据仓库 机器学习 深度学习 大数据毕业设计
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
MyBatis高级扩展
一、Mapper批量映射优化: 1.需求: Mapper 配置文件很多时,在全局配置文件中一个一个注册太麻烦,希望有一个办法能够一劳永逸 2.配置方式: Mybatis允许在指定Mapper映射文件时,只指定其所在的包: <mappers><package name"c…...
代码美学2:MATLAB制作渐变色
效果: %代码美学:MATLAB制作渐变色 % 创建一个10x10的矩阵来表示热力图的数据 data reshape(1:100, [10, 10]);% 创建热力图 figure; imagesc(data);% 设置颜色映射为“cool” colormap(cool);% 在热力图上添加边框 axis on; grid on;% 设置热力图的颜色…...
浅谈- “ 变量中 无符号 与 有符号 的 值转换 ”
在同一个表达式中,若同时出现 无符号变量 与 有符号变量 : 1、都转换为无符号类型:(注:2^324294967296)即unsigned int 的最大值 2、然后再运行表达式 实例: #include <stdio.h>char fun(…...
【AI绘画】Midjourney进阶:色调详解(上)
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 💯前言💯Midjourney中的色彩控制为什么要控制色彩?为什么要在Midjourney中控制色彩? 💯色调白色调淡色调明色调 💯…...
代码管理之Gitlab
文章目录 Git基础概述场景本地修改未提交,拉取远程代码修改提交本地,远程已有新提交 GitIDEA引入Git拉取仓库代码最后位置 Git基础 概述 workspace 工作区:本地电脑上看到的目录; repository 本地仓库:就是工作区中隐…...
防御网络攻击的创新策略
关键要点 ● 了解各种类型的网络攻击对于组织加强防御至关重要。 ● 制定敏捷的网络安全策略可帮助企业快速应对新出现的威胁。 ● 跨行业协作和威胁情报共享可以增强整体安全性。 网络攻击威胁日益严重 网络攻击的数量和复杂程度急剧增加,对全球组织构成了重大…...
C++软件设计模式之组合模式概述
组合模式(Composite Pattern)是C软件设计模式中的一种,主要用于解决对象的层次结构问题。它允许你将对象组合成树形结构来表示“部分-整体”的层次结构,使得客户端可以统一地处理单个对象和组合对象。 主要用于解决的问题&#x…...
利用HTML5和CSS来实现一个漂亮的表格样式
利用HTML5和CSS来实现一个漂亮的表格样式 第一步:创建HTML结构第二步:添加CSS样式第三步:响应式设计第四步:加入交互效果 第一步:创建HTML结构 我们将用HTML创建一个基本的表格结构。代码如下: <!DOCT…...
Vivado程序固化到Flash
在上板调试FPGA时,通常使用JTAG接口下载程序到FPGA芯片中,FPGA本身是基于RAM工艺的器件,因此掉电后会丢失芯片内的程序,需要重新烧写程序。但是当程序需要投入使用时不能每一次都使用JTAG接口下载程序,一般FPGA的外围会…...
HCIA笔记3--TCP-UDP-交换机工作原理
1. tcp协议 可靠的连接 1.1 报文格式 1.2 三次握手 1.3 四次挥手 为什么TIME_WAIT需要2MSL的等待时间? (a) 为了实现可靠的关闭 (b)为了让过期的报文在网络上消失 对于(a), 假设host发给server的last ack丢了。 ser…...
计算机网络的功能
目录 信息交换 资源共享 分布式处理 可靠性增强 集中管理 信息交换 计算机网络最基本的功能之一是允许不同设备之间的数据通信。这包括电子邮件的发送和接收、即时消息的传递、文件传输等。通过网络,用户可以轻松地与全球各地的其他人进行沟通和协作。 信息交…...
Redis设计与实现第14章 -- 服务器 总结(命令执行器 serverCron函数 初始化)
14.1 命令请求的执行过程 一个命令请求从发送到获得回复的过程中,客户端和服务器都需要完成一系列操作。 14.1.1 发送命令请求 当用户在客户端中输入一个命令请求的时候,客户端会把这个命令请求转换为协议格式,然后通过连接到服务器的套接字…...
多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测
多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测 目录 多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 多输入多输出 | Matlab实现TCN-GRU时间卷积…...
windows安全中心,永久卸载工具分享
使用方法 2024Goby红队版工具分享,附2024年漏洞POC下载 下载链接: https://pan.quark.cn/s/4fc2712a2afc一路回车,选项Y即可 耐心等待几秒种,自动重启 此时打开windows安全中心,已经完全不能使用了,响应…...
《安富莱嵌入式周报》第346期:开源2GHz带宽,12bit分辨率,3.2Gsps采样率示波,开源固件安全分析器, 开源口袋电源,开源健康测量,FreeCAD
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频: https://www.bilibili.com/video/BV1TYBhYKECK/ 《安富莱嵌入式周报》第346期:开源2GHz带…...
Apache OFBiz xmlrpc XXE漏洞(CVE-2018-8033)
目录 1、漏洞描述 2、EXP下载地址 3、EXP利用 1、漏洞描述 Apache OFBiz是一套企业资源计划(ERP)系统。它提供了广泛的功能,包括销售、采购、库存、财务、CRM等。 Apache OFBiz还具有灵活的架构和可扩展性,允许用户根据业务需求…...
【论文复现】融入模糊规则的宽度神经网络结构
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀ 融入模糊规则的宽度神经网络结构 论文概述创新点及贡献 算法流程讲解核心代码复现main.py文件FBLS.py文件 使用方法测试结果示例:…...
sql server 获取当前日期的时间戳
SQL Server 获取当前日期的时间戳 在 SQL Server 中,可以使用 GETDATE() 函数获取当前日期和时间。如果想要获取当前日期的时间戳,可以将日期转换为 UNIX 时间戳格式。本文将介绍如何在 SQL Server 中获取当前日期的时间戳,并提供示例代码。 …...
LLM PPT Translator
LLM PPT Translator 引言Github 地址UI PreviewTranslated Result Samples 引言 周末开发了1个PowerPoint文档翻译工具,上传PowerPoint文档,指定想翻译的目标语言,通过LLM的能力将文档翻译成目标语言的文档。 Github 地址 https://github.…...
铲屎官进,2024年宠物空气净化器十大排行,看看哪款吸毛最佳?
不知道最近换毛季,铲屎官们还承受的住吗?我家猫咪每天都在表演“天女散花”,家里没有一块干净的地方,空气中也都是堆积的浮毛,幸好有宠物空气净化器这种清理好物。宠物空气净化器针对宠物浮毛设计,可以有效…...
python 中常用的定积分求解方法
【例1】 解:本例题使用 Scipy 科学计算库的 quad 函数,它的一般形式是 scipy.integrate.quad(f,a,b),其中 f 是积分的函数名称,a和b分别是下线和上线。 【代码如下】: import numpy as np from scipy.integrate impo…...
音视频相关的一些基本概念
音视频相关的一些基本概念 文章目录 音视频相关的一些基本概念RTTH264profile & levelI帧 vs IDRMP4 封装格式AAC封装格式TS封装格式Reference RTT TCP中的RTT指的是“往返时延”(Round-Trip Time),即从发送方发送数据开始,到…...
王也高清壁纸图片/成都百度推广账户优化
之前用飞线用旧板子飞线连接了一个wifi模块到usb0口上,调试ok的,现在新设计的板子回来了,wifi模块是连接在usb2口上的,系统起来后发现wlan0不存在,用lsusb查看wifi模块的usb设备竟然没有识别到。 [ 5.580165] insmo…...
网站建设wang1314/长沙竞价优化
*Java程序的运行包括两个非常重要的阶段 -编译阶段 -运行阶段 *编译阶段 -编译阶段主要的任务是检查Java源程序是否符合Java语法,符合Java语法则能够生成正常的字节码文件(xxx.class),不符合规则则无法生成字节码文件。 -字节码文…...
z-blog wordpress/合肥最新消息今天
357 Lambda表达式练习1(抽象方法无参无返回值) 【练习1】 定义一个piano接口,里面定义一个抽象方法:void listen()定义一个PianoDemo测试类,里面提供个方法 main,调用listenPianolistenPiano【练习2】 定…...
北斗导航2022最新版手机版/seo推广小分享
http://blog.csdn.net/u012926924/article/details/50606195 最简android之wifi调试 做android开发的时候,经常遇到的一个问题就是真机调试次数多了,会导致usb口,损坏,而且长期给手机充电也会损坏手机,所以我想了想是…...
wordpress输出文章/贵港seo关键词整站优化
python教室图书馆座位预约 django教室图书馆座位预约 python毕业设计作品成品 django毕业设计作品成品 整个项目包含了:开题报告 开题报告PPT 任务书 中期报告 论文模板 答辩PPT等 项目源码 主要安介绍了系统在开发过程中所应用到的一些关键的技术 主要pyth…...
如何查看网站域名信息/福州seo网站排名
去年,滴滴顺风车连续发生两起恶性事件,随后,滴滴顺风车于2018年8月27日宣布无限期下线整改。时隔400多天后,滴滴顺风车今天再次上线,在哈尔滨、太原、江苏常州3个城市上线试运营。顺风车在安全方面有哪些新的措施&…...