kmeans 最佳聚类个数 | 轮廓系数(越大越好)
轮廓系数越大,表示簇内实例之间紧凑,簇间距离大,这正是聚类的标准概念。
- 簇内的样本应该尽可能相似。
- 不同簇之间应该尽可能不相似。
目的:鸢尾花数据进行kmeans聚类,最佳聚类个数是多少?
plot(iris[,1:4], col=iris$Species)

1. 标准化很重要
假设已经知道最佳是3类,
- 使用原始数据做kmeans,和原始标签不一致的很多。
- 如果做了标准化,kmeans的分类结果和原始标签一模一样。
(1). raw dat (错了好多)
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
# 1 2 3
#setosa 0 0 50
#versicolor 48 2 0
#virginica 14 36 0plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$origin, pch=19)
plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$pred, pch=19)
(2). normalized dat (几乎全对)
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t() |> as.data.frame()
head(dat)# 行作为观测值
km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
# 1 2 3
#setosa 50 0 0
#versicolor 0 45 5
#virginica 0 0 50
2. 最佳分类数
(0) 预处理
dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t() |> as.data.frame()
head(dat)
(1) factoextra - silhouette: n=2
library(factoextra)
tmp = factoextra::fviz_nbclust( dat, kmeans, method = "silhouette")
#str(tmp)
tmp #图# fviz_nbclust(dat, kmeans, method = "silhouette", k.max = 20)

(2) 碎石图: n=2
# 在一个循环中进行15次的kmeans聚类分析
{
totalwSS=vector(mode = "numeric", 15)
for (i in 1:15){t1= kmeans(dat, i)totalwSS[i] <- t1$tot.withinss
}
# 聚类碎石图 - 使用plot函数绘制total_wss与no-of-clusters的数值。
plot(x=1:15, # x= 类数量, 1 to 15totalwSS, #每个类的total_wss值col="navy", lwd=2,type="b" # 绘制两点,并将它们连接起来
)
}

(3) silhouette 画图: n=2?
逐个画:
# 逐个画轮廓系数
library(cluster)
dis = dist(dat) #行之间的距离
#
n=3
kclu <- kmeans(dat, centers = 3, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, #c("red", "orange", "blue"), main="")#
n=4
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#
#
n=8
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#

批量计算:
silhouette_score <- function(k){km <- kmeans(dat, centers = k, nstart=25)ss <- silhouette(km$cluster, dist(dat))mean(ss[, 3])
}
k <- 2:15
avg_sil <- sapply(k, silhouette_score)
plot(k, avg_sil, type='b',xlab='Number of clusters', ylab='Average Silhouette Scores', frame=FALSE)

最大是2,其次是3类。
根据本文图1,忽略颜色,只看数值分布,确实最佳是2类。
用标准化后的数据呢?
plot(dat, col=iris$Species, main="Normalized data")

plot(dat,main="Normalized data")
结论不变:如果忽略颜色,依旧是很清晰的2类。

(4) pam 是一种更稳定的 kmeans
Partitioning Around Medoids:
Partitioning (clustering) of the data into k clusters “around medoids”, a more robust version of K-means.
# 最佳分类数:
Ks=sapply(2:15, function(i){summary(silhouette(pam(dat, k=i)))$avg.width
})
plot(2:15,Ks,xlab="k",ylab="av. silhouette",type="b", pch=19)效果:
t1=pam(dat, k=3)
> table(t1$clustering, iris$Species) setosa versicolor virginica1 50 0 02 0 44 03 0 6 50
还是有几个错的。
End
相关文章:
kmeans 最佳聚类个数 | 轮廓系数(越大越好)
轮廓系数越大,表示簇内实例之间紧凑,簇间距离大,这正是聚类的标准概念。 簇内的样本应该尽可能相似。不同簇之间应该尽可能不相似。 目的:鸢尾花数据进行kmeans聚类,最佳聚类个数是多少? plot(iris[,1:4…...
【纪念365天】我的创作纪念日
过去的一年 没有注意加入csdn已经有一年了。 这几天翻看小猴儿的通知才发现时间来到了一年的纪念日。稍稍思索想要将这一段时间的学习到的知识以及偶然遇到的机遇做一下总结。 上一次写纪念日是来到csdn128天的时候, 200天前我的学习状态是非常疯狂的。 只记得我当时…...
Opencv+ROS实现颜色识别应用
目录 一、工具 二、原理 概念 本质 三、实践 添加发布话题 主要代码 四、成果 五、总结 一、工具 opencvros ubuntu18.04 摄像头 二、原理 概念 彩色图像:RGB(红,绿,蓝) HSV图像:H࿰…...
蓝桥杯c++算法秒杀【6】之动态规划【下】(数字三角形、砝码称重(背包问题)、括号序列、异或三角:::非常典型的必刷例题!!!)
别忘了请点个赞收藏关注支持一下博主喵!!!! ! ! ! ! 关注博主,更多蓝桥杯nice题目静待更新:) 动态规划 三、括号序列 【问题描述】 给定一个括号序列,要求尽可能少地添加若干括号使得括号序列变得合…...
C++设计模式(单例模式)
一、介绍 1.动机 在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性、以及良好的效率。 如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例? 这应该是类设计者的…...
前端---CSS(部分用法)
HTML画页面--》这个页面就是页面上需要的元素罗列起来,但是页面效果很差,不好看,为了让页面好看,为了修饰页面---》CSS CSS的作用:修饰HTML页面 用了CSS之后,样式和元素本身做到了分离的效果。---》降低了代…...
2024年最新版Java八股文复习
最新版本Java八股文复习,每天更新一篇,博主正在持续努力更新中~~~ 一、Java基础篇1、怎么理解面向对象?简单说说封装、继承、多态三大特性?2、多态体现在哪几个方面?3、面向对象的设计原则你知道有哪些吗?4…...
计算机毕业设计Hadoop+Spark音乐推荐系统 音乐预测系统 音乐可视化大屏 音乐爬虫 HDFS hive数据仓库 机器学习 深度学习 大数据毕业设计
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
MyBatis高级扩展
一、Mapper批量映射优化: 1.需求: Mapper 配置文件很多时,在全局配置文件中一个一个注册太麻烦,希望有一个办法能够一劳永逸 2.配置方式: Mybatis允许在指定Mapper映射文件时,只指定其所在的包: <mappers><package name"c…...
代码美学2:MATLAB制作渐变色
效果: %代码美学:MATLAB制作渐变色 % 创建一个10x10的矩阵来表示热力图的数据 data reshape(1:100, [10, 10]);% 创建热力图 figure; imagesc(data);% 设置颜色映射为“cool” colormap(cool);% 在热力图上添加边框 axis on; grid on;% 设置热力图的颜色…...
浅谈- “ 变量中 无符号 与 有符号 的 值转换 ”
在同一个表达式中,若同时出现 无符号变量 与 有符号变量 : 1、都转换为无符号类型:(注:2^324294967296)即unsigned int 的最大值 2、然后再运行表达式 实例: #include <stdio.h>char fun(…...
【AI绘画】Midjourney进阶:色调详解(上)
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 💯前言💯Midjourney中的色彩控制为什么要控制色彩?为什么要在Midjourney中控制色彩? 💯色调白色调淡色调明色调 💯…...
代码管理之Gitlab
文章目录 Git基础概述场景本地修改未提交,拉取远程代码修改提交本地,远程已有新提交 GitIDEA引入Git拉取仓库代码最后位置 Git基础 概述 workspace 工作区:本地电脑上看到的目录; repository 本地仓库:就是工作区中隐…...
防御网络攻击的创新策略
关键要点 ● 了解各种类型的网络攻击对于组织加强防御至关重要。 ● 制定敏捷的网络安全策略可帮助企业快速应对新出现的威胁。 ● 跨行业协作和威胁情报共享可以增强整体安全性。 网络攻击威胁日益严重 网络攻击的数量和复杂程度急剧增加,对全球组织构成了重大…...
C++软件设计模式之组合模式概述
组合模式(Composite Pattern)是C软件设计模式中的一种,主要用于解决对象的层次结构问题。它允许你将对象组合成树形结构来表示“部分-整体”的层次结构,使得客户端可以统一地处理单个对象和组合对象。 主要用于解决的问题&#x…...
利用HTML5和CSS来实现一个漂亮的表格样式
利用HTML5和CSS来实现一个漂亮的表格样式 第一步:创建HTML结构第二步:添加CSS样式第三步:响应式设计第四步:加入交互效果 第一步:创建HTML结构 我们将用HTML创建一个基本的表格结构。代码如下: <!DOCT…...
Vivado程序固化到Flash
在上板调试FPGA时,通常使用JTAG接口下载程序到FPGA芯片中,FPGA本身是基于RAM工艺的器件,因此掉电后会丢失芯片内的程序,需要重新烧写程序。但是当程序需要投入使用时不能每一次都使用JTAG接口下载程序,一般FPGA的外围会…...
HCIA笔记3--TCP-UDP-交换机工作原理
1. tcp协议 可靠的连接 1.1 报文格式 1.2 三次握手 1.3 四次挥手 为什么TIME_WAIT需要2MSL的等待时间? (a) 为了实现可靠的关闭 (b)为了让过期的报文在网络上消失 对于(a), 假设host发给server的last ack丢了。 ser…...
计算机网络的功能
目录 信息交换 资源共享 分布式处理 可靠性增强 集中管理 信息交换 计算机网络最基本的功能之一是允许不同设备之间的数据通信。这包括电子邮件的发送和接收、即时消息的传递、文件传输等。通过网络,用户可以轻松地与全球各地的其他人进行沟通和协作。 信息交…...
Redis设计与实现第14章 -- 服务器 总结(命令执行器 serverCron函数 初始化)
14.1 命令请求的执行过程 一个命令请求从发送到获得回复的过程中,客户端和服务器都需要完成一系列操作。 14.1.1 发送命令请求 当用户在客户端中输入一个命令请求的时候,客户端会把这个命令请求转换为协议格式,然后通过连接到服务器的套接字…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
