当前位置: 首页 > news >正文

RAG 与 HyDE

传统 RAG 与 HyDE,直观解释!

传统 RAG 系统的一个关键问题是问题在语义上与答案不相似。

考虑以下示例,您想要找到类似于“什么是 ML?”的句子。 “什么是 AI?” 可能看起来比“机器学习很有趣”更相似。

这种语义差异导致在检索步骤中检索到几个不相关的上下文。

HyDE 解决了这个问题。

下面的视觉效果说明了这种方法与传统 RAG 的不同之处。

它的工作原理如下:

- 使用 LLM 为查询 (Q) 生成假设答案 (H)。 这个答案不必完全正确。

- 使用检索器模型嵌入答案以获得 E。 经过对比学习训练的双编码器通常用于此目的。

- 使用嵌入 E 查询向量数据库并检索相关上下文 (C)。

- 将假设答案 H、检索到的上下文 C 和查询 Q 传递给 LLM 以生成最终答案。

完成!

现在,当然,生成的假设可能会包含幻觉细节。

但这不会严重影响性能,因为检索器模型是嵌入的。

更具体地说,该模型使用对比学习进行训练,它还可以用作近无损压缩器,其任务是过滤掉虚假文档的幻觉细节。

这会产生一个向量嵌入,预计它与实际文档的嵌入的相似度要高于问题与真实文档的相似度。

多项研究表明,与传统嵌入模型相比,HyDE 提高了检索性能。

但这是以增加延迟和更多 LLM 使用为代价的。

喜欢这个吗?你也应该看看我的 RAG 系列!从构建和优化 RAG 应用程序到评估性能和制作代理和多模式系统——一切都在这里。


@akshay_pachaar

相关文章:

RAG 与 HyDE

传统 RAG 与 HyDE,直观解释! 传统 RAG 系统的一个关键问题是问题在语义上与答案不相似。 考虑以下示例,您想要找到类似于“什么是 ML?”的句子。 “什么是 AI?” 可能看起来比“机器学习很有趣”更相似。 这种语义差…...

在WPF程序中实现PropertyGrid功能

使用C#开发过Windows Forms的都知道,在Windows Forms程序中,有一个PropertyGrid控件,可以用于显示对象的属性,在WPF中并没有默认提供此功能的控件,今天以一个简单的小例子,简述在WPF中借助WinForm的Propert…...

【R语言管理】Pycharm配置R语言及使用Anaconda管理R语言虚拟环境

目录 使用Anaconda创建R语言虚拟环境1. 安装Anaconda2. 创建R语言虚拟环境 Pycharm配置R语言1. 安装Pycharm2. R Language for IntelliJ插件 参考 使用Anaconda创建R语言虚拟环境 1. 安装Anaconda Anaconda的安装可参见另一博客-【Python环境管理工具】Anaconda安装及使用教程…...

.Net与C#

.NET 与 C# 的关系 .NET 是一个由微软开发的软件框架,它提供了一套用于开发、运行和部署应用程序的工具和库。C# 是一种面向对象的编程语言,它是专门为.NET平台设计的。以下是.NET与C#之间关系的详细说明: 目标平台:C# 是.NET平…...

使用ElementUI中的el-table制作可编辑的表格

在前端开发时,可能会需要用到可编辑的表格控件。一些原生的UI框架并不支持Table控件的可编辑功能,所以只能自己实现。 以下用Vue3Element-Plus进行示例开发。 一、实现可编辑的单元格 我想要实现的效果是,鼠标移动到el-table的某行时&…...

开放性技术的面试题该如何应对?

1. 上线出现问题如何解决? 步骤: 立即响应:迅速确认问题的存在和影响范围。回滚:如果问题严重影响用户,考虑立即回滚到上一个稳定版本。日志分析:查看服务器日志、应用日志和前端日志,定位问题…...

Leetcode 面试150题 88.合并两个有序数组 简单

系列博客目录 文章目录 系列博客目录88. 合并两个有序数组 简单示例 1:示例 2:示例 3:提示:问题: 88. 合并两个有序数组 简单 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n,分别表示 nums1 和 nums2 中的元素数目。 请你…...

CGAL CGAL::Polygon_mesh_processing::self_intersections解析

CGAL::Polygon_mesh_processing::self_intersections 是用于检测多边形网格(Polygon Mesh)中的自相交的函数。自相交是指网格中的某些面(例如三角形)与同一网格中的其他面交叉的情况。这种情况通常是不期望的,因为它会…...

esp32触发相机

esp32触发相机&#xff0c;测试成功上升沿触发 串口发送命令 up 20000 1 20000 触发 #include <Arduino.h>const int outputPin 12; // 输出引脚 String inputCommand ""; // 串口输入缓冲区// 解析命令参数&#xff0c;例如 "up 10 5" 解析为…...

webrtc支持h265

Webrtc播放H265的技术探索(datachannelwasm) - 飞翔天空energy - 博客园 https://github.com/ZLMediaKit/ZLMediaKit/issues/3589 [技术咨询]addStreamProxy 添加拉流代理之后&#xff0c;webrtc协议无法播放&#xff0c;其它协议正常 Issue #1808 ZLMediaKit/ZLMediaKit G…...

macos 14.0 Monoma 修改顶部菜单栏颜色

macos 14.0 设置暗色后顶部菜单栏还维持浅色&#xff0c;与整体不协调。 修改方式如下&#xff1a;...

在 Mac(ARM 架构)上安装 JDK 8 环境

文章目录 步骤 1&#xff1a;检查系统版本步骤 2&#xff1a;下载支持 ARM 的 JDK 8步骤 3&#xff1a;安装 JDK步骤 4&#xff1a;配置环境变量步骤 5&#xff1a;验证安装步骤 6&#xff1a;注意事项步骤7&#xff1a;查看Java的安装路径 在 Mac&#xff08;ARM 架构&#xf…...

Linux高阶——1123—

1、服务器版本介绍及实现 1、单进程单任务服务器&#xff08;阻塞IO&#xff09; 单进程模型&#xff0c;阻塞IO冲突&#xff0c;等待连接时无法读取数据&#xff0c;读取数据时无法连接 比较适合处理单任务&#xff0c;排队处理业务 伪代码 while(true) {addrlensizeof(c…...

VOLO实战:使用VOLO实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…...

【kafka02】消息队列与微服务之Kafka部署

Kafka 部署 Kafka 部署说明 kafka 版本选择 kafka 基于scala语言实现,所以使用kafka需要指定scala的相应的版本.kafka 为多个版本的Scala构建。这仅在使用 Scala 时才重要&#xff0c;并且希望为使用的相同 Scala 版本构建一个版本。否则&#xff0c;任何版本都可以 kafka下…...

MySQL系列之数据类型(Numeric)

导览 前言一、数值类型综述二、数值类型详解1. NUMERIC1.1 UNSIGNED或SIGNED1.2 数据类型划分 2. Integer类型取值和存储要求3. Fixed-Point类型取值和存储要求4. Floating-Point类型取值和存储要求 结语精彩回放 前言 MySQL系列最近三篇均关注了和我们日常工作或学习密切相关…...

BERT简单理解;双向编码器优势

目录 BERT简单理解 一、BERT模型简单理解 二、BERT模型使用举例 三、BERT模型的优势 双向编码器优势 BERT简单理解 (Bidirectional Encoder Representations from Transformers)模型是一种预训练的自然语言处理(NLP)模型,由Google于2018年推出。以下是对BERT模型的简…...

LLamafactory 批量推理与异步 API 调用效率对比实测

背景 在阅读 LLamafactory 的文档时候&#xff0c;发现它支持批量推理: 推理.https://llamafactory.readthedocs.io/zh-cn/latest/getting_started/inference.html 。 于是便想测试一下&#xff0c;它的批量推理速度有多快。本文实现了 下述两种的大模型推理&#xff0c;并对…...

spf算法、三类LSA、区间防环路机制/规则、虚连接

1.构建spf树&#xff1a; 路由器将自己作为最短路经树的树根根据Router-LSA和Network-LSA中的拓扑信息,依次将Cost值最小的路由器添加到SPF树中。路由器以Router ID或者DR标识。广播网络中DR和其所连接路由器的Cost值为0。SPF树中只有单向的最短路径,保证了OSPF区域内路由计管不…...

C语言学习 12(指针学习1)

一.内存和地址 1.内存 在讲内存和地址之前&#xff0c;我们想有个⽣活中的案例&#xff1a; 假设有⼀栋宿舍楼&#xff0c;把你放在楼⾥&#xff0c;楼上有100个房间&#xff0c;但是房间没有编号&#xff0c;你的⼀个朋友来找你玩&#xff0c;如果想找到你&#xff0c;就得挨…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...