leetcode hot100【LeetCode 215.数组中的第K个最大元素】java实现
LeetCode 215.数组中的第K个最大元素
题目描述
给定一个整数数组 nums 和一个整数 k,请返回数组中第 k 个最大的元素。
请注意,要求排名是从大到小的,因此第 k 个最大元素是排序后的第 k 个元素。你需要设计一个高效的算法来解决这个问题。
示例 1:
输入:nums = [3,2,1,5,6,4], k = 2
输出:5
解释:数组中第二大的元素是 5。
示例 2:
输入:nums = [3,2,3,1,2,4,5,5,6], k = 4
输出:4
解释:数组中第四大的元素是 4。
Java 实现代码
class Solution {public int findKthLargest(int[] nums, int k) {// 使用最小堆来找第k大的元素PriorityQueue<Integer> minHeap = new PriorityQueue<>(k);for (int num : nums) {minHeap.offer(num);if (minHeap.size() > k) {minHeap.poll(); // 维护堆的大小为k,去除堆中最小的元素}}return minHeap.peek(); // 最小堆的根就是第k大的元素}
}
解题思路
最小堆方法: 我们可以利用最小堆(
PriorityQueue)来实现。堆是一个完全二叉树,可以在O(logn)时间内进行插入和删除操作。
- 将数组中的前
k个元素插入到最小堆中。- 如果当前堆中元素个数大于k,则吐出。
- 最后,堆顶的元素就是第
k大的元素。这种方法的时间复杂度是
O(n log k),其中n是数组的大小,k是需要找到的第k大元素。快速选择法: 另一种方法是使用快速排序的思想,即快速选择(Quickselect)。通过对数组进行划分,选择性地进入有可能包含第
k
大元素的子数组。这个方法的平均时间复杂度是O(n)。
复杂度分析
- 时间复杂度: 使用最小堆方法时,插入一个元素的时间复杂度是
O(log k),所以对于数组中n个元素,总的时间复杂度是O(n log k)。- 空间复杂度:
O(k),因为堆中最多存储k个元素。
举例说明执行过程
假设有数组
nums = [3,2,1,5,6,4],我们要求第2大的元素。
- 初始数组:
[3,2,1,5,6,4],k = 2- 创建一个大小为
2的最小堆:
- 插入
3,堆为[3]- 插入
2,堆为[2, 3](因为堆是最小堆,所以自动调整)- 插入
1,堆为[1, 3](删除最小元素2)- 插入
5,堆为[3, 5](删除最小元素1)- 插入
6,堆为[5, 6](删除最小元素3)- 插入
4,堆为[5, 6](删除最小元素4)- 最终堆中元素为
[5, 6],堆顶为5,即第2大元素。
相关文章:
leetcode hot100【LeetCode 215.数组中的第K个最大元素】java实现
LeetCode 215.数组中的第K个最大元素 题目描述 给定一个整数数组 nums 和一个整数 k,请返回数组中第 k 个最大的元素。 请注意,要求排名是从大到小的,因此第 k 个最大元素是排序后的第 k 个元素。你需要设计一个高效的算法来解决这个问题。…...
簡單易懂:如何在Windows系統中修改IP地址?
無論是為了連接到一個新的網路,還是為了解決網路連接問題,修改IP地址都是一個常見的操作。本文將詳細介紹如何在Windows系統中修改IP地址,包括靜態IP地址的設置和動態IP地址的獲取。 IP地址是什麼? IP地址是互聯網協議地址的簡稱…...
Python中的23种设计模式:详细分类与总结
设计模式是解决特定问题的通用方法,分为创建型模式、结构型模式和行为型模式三大类。以下是对每种模式的详细介绍,包括其核心思想、应用场景和优缺点。 一、创建型模式(Creational Patterns) 创建型模式关注对象的创建࿰…...
日历使用及汉化——fullcalendar前端
官网 FullCalendar - JavaScript Event Calendar 引入项目 <link hrefhttps://cdnjs.cloudflare.com/ajax/libs/fullcalendar/5.10.1/main.min.css relstylesheet /><script srchttps://cdnjs.cloudflare.com/ajax/libs/fullcalendar/5.10.1/main.min.js></sc…...
视频截断,使用 FFmpeg
使用 FFmpeg 截取视频并去掉 5 分 49 秒后的内容,可以使用以下命令: ffmpeg -i input.mp4 -t 00:05:49 -c:v libx264 -crf 23 -preset medium -c:a aac -b:a 192k output.mp4-i input.mp4: 指定输入视频文件 input.mp4。 -t 00:05:49&#x…...
使用系统内NCCL环境重新编译Pytorch
intro: 费了老大劲,来重新编译pytorch,中间报了无数错误。原生的编译好的pytorch是直接用的其自带NCCL库,并且从外部是不能进行插桩的,因为根本找不到libnccl.so文件。下面记录下重新编译pytorch的过程。指定USE_SYSTEM_NCCL1。这…...
1. Klipper从安装到运行
本文记录Klipper固件从安装,配置到运行的详细过程 Klipper是3D打印机固件之一,它通常运行在linux系统(常使用Debian,其它的linux版本也可以)上,因此需要一个能运行Linux系统的硬件,比如电脑&am…...
docker 卸载与安装
卸载 查询之前安装的docker, 没有查到则不用卸载删除 yum list installed | grep docker 卸载安装包 yum remove docker-* -y 删除镜像、容器、默认挂载卷 rm -rf /var/lib/docker 安装 -ce 安装稳定版本 -y 当安装过程提示选择全部为 "yes" yum install d…...
跨部门文件共享安全:平衡协作与风险的关键策略
在现代企业中,跨部门协作已成为推动业务发展的关键因素。然而,随着信息的自由流动和共享,文件安全风险也随之增加。如何在促进跨部门协作的同时,确保文件共享的安全性,成为了一个亟待解决的问题。 一、明确文件分类与…...
基于单片机的智慧小区人脸识别门禁系统
本设计基于单片机的智慧小区人脸识别门禁系统。由STM32F103C8T6单片机核心板、显示模块、摄像头模块、舵机模块、按键模块和电源模块组成。可以通过摄像头模块对进入人员人脸数据进行采集,识别成功后,舵机模块动作,模拟门禁打开,门…...
【es6】原生js在页面上画矩形及删除的实现方法
画一个矩形,可以选中高亮,删除自己效果的实现,后期会丰富下细节,拖动及拖动调整矩形大小 实现效果 代码实现 class Draw {constructor() {this.x 0this.y 0this.disX 0this.disY 0this.startX 0this.startY 0this.mouseDo…...
【git实践】分享一个适用于敏捷开发的分支管理策略
文章目录 1. 背景2. 分支管理实践2.1. 敏捷开发中分支管理面临的问题2.2. 分支管理策略2.3. 还需要注意的一些问题 3.总结 1. 背景 在实际的开发工作中,我们往往会面临多任务并行研发,多个环境管理的情况,这种情况下,一个合适的分…...
Redis与MySQL如何保证数据一致性
Redis与MySQL如何保证数据一致性 简单来说 该场景主要发生在读写并发进行时,才会发生数据不一致。 主要流程就是要么先操作缓存,要么先操作Redis,操作也分修改和删除。 一般修改要执行一系列业务代码,所以一般直接删除成本较低…...
基于微信小程序的教室预约系统+LW示例参考
1.项目介绍 功能模块:管理员(学生管理、教师管理、申请管理、设备管理、报修管理等)、普通用户/学生(注册登录、申请预约、退订、报修等)技术选型:SSM、JSP、uniapp等测试环境:idea2024&#x…...
Linux 安装 Git 服务器
一、安装 Git 1. 在 CentOS/RHEL 中使用以下命令: sudo yum update -y # 或者 sudo dnf update -y (在较新的系统中) sudo yum install git -y验证安装:git --version 2. 配置 Git 用户 git config --global user.name "Your Name" git co…...
总结:Yarn资源管理
一、介绍 本文梳理下Yarn的资源分配计算逻辑。 二、配置 - 资源限制 1、配置NodeManager可分配的资源池的总量 <property><name>yarn.nodemanager.resource.memory-mb</name><value>4096</value> </property> 作用对象:节点管理器(No…...
Python学习34天
import random class Game: peo0 rob0 # # def __init__(self,peo,rob): # self.peopeo # self.robrob def Play(self): """ 石头剪刀布游戏,0代表石头,1代见到,2代表石头 …...
深入浅出 WebSocket:构建实时数据大屏的高级实践
简介 请参考下方,学习入门操作 基于 Flask 和 Socket.IO 的 WebSocket 实时数据更新实现 在当今数字化时代,实时性是衡量互联网应用的重要指标之一。无论是股票交易、在线游戏,还是实时监控大屏,WebSocket 已成为实现高效、双向…...
三开关VUE组件
一、使用效果 <template><QqThreeSwitch v-model"value" /><!-- <SqThreeSwitch v-model"value" :options"[test1, test2, test3]"><template #left-action><div style"display: flex"><IconMoon…...
SpringCloud+SpringCloudAlibaba学习笔记
SpringCloud 服务注册中心 eureka ap 高可用 分布式容错 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId> </dependency> <dependency><groupId…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
