RNN与LSTM,通过Tensorflow在手写体识别上实战
简介:本文从RNN与LSTM的原理讲起,在手写体识别上进行代码实战。同时列举了优化思路与优化结果,都是基于Tensorflow1.14.0的环境下,希望能给您的神经网络学习带来一定的帮助。如果您觉得我讲的还行,希望可以得到您的点赞收藏关注。
RNN与LSTM,通过Tensorflow在手写体识别上实战
- 1 RNN理论基础
- 1.1网络结构
- 1.2 RNN存在的问题
- 1.3衍生出LSTM
- 2 代码实现
- 2.1 导包
- 2.2 导入数据集
- 2.3 变量准备
- 2.4 准备占位符
- 2.5 初始化权重和偏置值
- 2.6 RNN网络
- 2.7 损失函数Loss
- 2.8 计算准确率
- 2.9Session训练
- 2.10运行结果
- 3 优化
- 3.1 网络结构优化
- 3.2学习率的变化
- 致谢
1 RNN理论基础
1.1网络结构
上一个神经元的输出Wrecurrent会作为下一个神经元的输入的一部分。
1.2 RNN存在的问题
第一个神经元的输出对第五个神经元的决策影响较少,存在梯度消失的问题。可以使用线性的激活函数,不会减弱。但是这个网络就没有选择性,靠谱和不靠谱的结果都会被记录
1.3衍生出LSTM
下面是LSTM的结果,看不懂没关系,下面会拆解成三个部分具体讲解,耐心看完就懂了
分为三个门,第一个门是遗忘门
第二个门是输入门
第三个门是输出门:
2 代码实现
2.1 导包
因为我是使用的jupyter运行的,所以我导入了import warnings避免一些不必要的警告,如果你使用的是pycharm就不用加跟warings相关的包了
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
2.2 导入数据集
mnist = input_data.read_data_sets("MNIST_DATA",one_hot=True)
2.3 变量准备
因为手写体数据集的图片大小是 28*28,他放在RNN中相当输入层一行序列有28个神经元,有28行输入
n_inputs =28 # 一行有28个数据
max_time = 28 # 一共有28行
设计隐藏层单元100,十个分类,每批次50个样本,计算批次数
lstm_size = 100
n_classes = 10
batch_size = 50
n_batch = mnist.train.num_examples // batch_size
2.4 准备占位符
x = tf.compat.v1.placeholder(tf.float32,[None,784])
y = tf.compat.v1.placeholder(tf.float32,[None,10])
2.5 初始化权重和偏置值
为了训练效果,采取生成正态分布标准差为0.1的初始权重
weights = tf.Variable(tf.random.truncated_normal([lstm_size,n_classes],stddev=0.1))
biases = tf.Variable(tf.constant(0.1,shape=[n_classes]))
2.6 RNN网络
这个函数的作用是定义网络,有几个知识点需要讲
- tf.nn.dynamic_rnn这个构建循环神经网络的函数的输入inputs 需要满足的格式[batch_size,max_time,n_inputs]
- tf.nn.dynamic_rnn返回值有两个第一个outputs他是每一次的输出,如果参数time_major = False,他的内容为[batch_size,max_time,cell.output_size],反之为[max_time,batch_size,cell.output_size]
- 另一个是final——state,他有三个维度[state,batch_size,cell.state_size]
- final_state[0] = cell state 中间信号,final_state[1] = hidden_state 一次时间序列的最后一次输出的结果,在这里就是28次时间序列因为图片是28*28
def RNN(X,weights,biases):inputs = tf.reshape(X,[-1,max_time,n_inputs])lstm_cell =tf.contrib.rnn.BasicLSTMCell(lstm_size, reuse=tf.compat.v1.AUTO_REUSE)# inputs = [batch_size,max_time,n_inputs]# final_state[state,batch_size,cell.state_size]# final_state[0] = cell state 中间信号# final_state[1] = hidden_state 一次时间序列的最后一次输出的结果,在这里就是28次时间序列# outputs # if time_major = False# [batch_size,max_time,cell.output_size]# if time_major = True# [max_time,batch_size,cell.output_size]# outputs是所有的结果outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype = tf.float32)results = tf.nn.softmax(tf.matmul(final_state[1],weights)+biases)return results
2.7 损失函数Loss
prediction = RNN(x,weights,biases)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction,labels=y))
2.8 计算准确率
使用adam优化器 学习率设置为0.0001然后比对正确结果在计算均值化为准确率
train_step = tf.compat.v1.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
2.9Session训练
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:sess.run(init)for epoch in range(6):for batch in range(n_batch):batch_xs,batch_ys = mnist.train.next_batch(batch_size)sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})print(f"第{epoch+1}次epoch,Accuracy = {str(acc)}")
2.10运行结果
效果一般不是很理想,我们优化一下
3 优化
3.1 网络结构优化
原本只有一层lstm,现在多加一层看看,效果有没有提升
def RNN(X, weights, biases):inputs = tf.reshape(X, [-1, max_time, n_inputs])num_layers = 2 # 可以自行调整层数,比如设置为2、3等cells = [tf.contrib.rnn.BasicLSTMCell(lstm_size, reuse=tf.compat.v1.AUTO_REUSE) for _ in range(num_layers)]stacked_lstm = tf.contrib.rnn.MultiRNNCell(cells)outputs, final_state = tf.nn.dynamic_rnn(stacked_lstm, inputs, dtype=tf.float32)results = tf.nn.softmax(tf.matmul(final_state[-1][1], weights) + biases) # 注意这里取最后一层的 hidden_statereturn results
3.2学习率的变化
每经过一百步降低学习率到原来的0.96,经过20个epoch看看效
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.compat.v1.train.exponential_decay(1e-4, global_step, decay_steps=100, decay_rate=0.96)with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):train_step = tf.compat.v1.train.AdamOptimizer(learning_rate).minimize(cross_entropy,global_step=global_step)
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
发现后面基本上学不到东西,学习率太低了 调高到 1e-3试试
相比于之前的百分之90已经算较为满意了,还是存在改良的提升空间,可以对衰减的步长decay_steps进行调整。当然了可以通过演化计算的算法去进行参数调优获得更好的结果,我推荐使用 哈里斯鹰,因为我大学做的毕业设计就是基于支持向量机和LSTM结合的使用哈里斯鹰优化参数的情感极性分析,所以我对这个比较拿手,但是这又不是毕业设计,没必要话这么多时间进行参数调优,主要就是太麻烦了。
致谢
本文参考了一些博主的文章,博取了他们的长处,也结合了我的一些经验,对他们表达诚挚的感谢,使我对 LSTM 的使用有更深入的了解,也推荐大家去阅读一下他们的文章。纸上学来终觉浅,明知此事要躬行:
LSTM从入门到精通(形象的图解,详细的代码和注释,完美的数学推导过程)
相关文章:

RNN与LSTM,通过Tensorflow在手写体识别上实战
简介:本文从RNN与LSTM的原理讲起,在手写体识别上进行代码实战。同时列举了优化思路与优化结果,都是基于Tensorflow1.14.0的环境下,希望能给您的神经网络学习带来一定的帮助。如果您觉得我讲的还行,希望可以得到您的点赞…...
Docker部署FastAPI实战
在现代 Web 开发领域,FastAPI 作为一款高性能的 Python 框架,正逐渐崭露头角,它凭借简洁的语法、快速的执行速度以及出色的类型提示功能,深受开发者的喜爱。而 Docker 容器化技术则为 FastAPI 应用的部署提供了便捷、高效且可移植…...

【Python数据分析五十个小案例】电影评分分析:使用Pandas分析电影评分数据,探索评分的分布、热门电影、用户偏好
博客主页:小馒头学python 本文专栏: Python数据分析五十个小案例 专栏简介:分享五十个Python数据分析小案例 在现代电影行业中,数据分析已经成为提升用户体验和电影推荐的关键工具。通过分析电影评分数据,我们可以揭示出用户的…...

Vue2学习记录
前言 这篇笔记,是根据B站尚硅谷的Vue2网课学习整理的,用来学习的 如果有错误,还请大佬指正 Vue核心 Vue简介 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。 它基于标准 HTML、CSS 和 JavaScr…...

TMS FNC UI Pack 5.4.0 for Delphi 12
TMS FNC UI Pack是适用于 Delphi 和 C Builder 的多功能 UI 控件的综合集合,提供跨 VCL、FMX、LCL 和 TMS WEB Core 等平台的强大功能。这个统一的组件集包括基本工具,如网格、规划器、树视图、功能区和丰富的编辑器,确保兼容性和简化的开发。…...

Redis主从架构
Redis(Remote Dictionary Server)是一个开源的、高性能的键值对存储系统,广泛应用于缓存、消息队列、实时分析等场景。为了提高系统的可用性、可靠性和读写性能,Redis提供了主从复制(Master-Slave Replication…...

logback动态获取nacos配置
文章目录 前言一、整体思路二、使用bootstrap.yml三、增加环境变量四、pom文件五、logback-spring.xml更改总结 前言 主要是logback动态获取nacos的配置信息,结尾完整代码 项目springcloudnacosplumelog,使用的时候、特别是部署的时候,需要改环境&#…...

KETTLE安装部署V2.0
一、前置准备工作 JDK:下载JDK (1.8),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在,可以跳过这步。KETTLE(8.2)压缩包:LHR提供关闭防火墙…...

[RabbitMQ] 保证消息可靠性的三大机制------消息确认,持久化,发送方确认
🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…...
aws服务--机密数据存储AWS Secrets Manager(1)介绍和使用
一、介绍 1、简介 AWS Secrets Manager 是一个完全托管的服务,用于保护应用程序、服务和 IT 资源中的机密信息。它支持安全地存储、管理和访问应用程序所需的机密数据,比如数据库凭证、API 密钥、访问密钥等。通过 Secrets Manager,你可以轻松管理、轮换和访问这些机密信息…...

Java设计模式笔记(一)
Java设计模式笔记(一) (23种设计模式由于篇幅较大分为两篇展示) 一、设计模式介绍 1、设计模式的目的 让程序具有更好的: 代码重用性可读性可扩展性可靠性高内聚,低耦合 2、设计模式的七大原则 单一职…...

Unity3d C# 实现一个基于UGUI的自适应尺寸图片查看器(含源码)
前言 Unity3d实现的数字沙盘系统中,总有一些图片或者图片列表需要点击后弹窗显示大图,这个弹窗在不同尺寸分辨率的图片查看处理起来比较麻烦,所以,需要图片能够根据容器的大小自适应地进行缩放,兼容不太尺寸下的横竖图…...

【es6进阶】vue3中的数据劫持的最新实现方案的proxy的详解
vuejs中实现数据的劫持,v2中使用的是Object.defineProperty()来实现的,在大版本v3中彻底重写了这部分,使用了proxy这个数据代理的方式,来修复了v2中对数组和对象的劫持的遗留问题。 proxy是什么 Proxy 用于修改某些操作的默认行为࿰…...

w~视觉~3D~合集3
我自己的原文哦~ https://blog.51cto.com/whaosoft/12538137 #SIF3D 通过两种创新的注意力机制——三元意图感知注意力(TIA)和场景语义一致性感知注意力(SCA)——来识别场景中的显著点云,并辅助运动轨迹和姿态的预测…...

IT服务团队建设与管理
在 IT 服务团队中,需要明确各种角色。例如系统管理员负责服务器和网络设备的维护与管理;软件工程师专注于软件的开发、测试和维护;运维工程师则保障系统的稳定运行,包括监控、故障排除等。通过清晰地定义每个角色的职责࿰…...

一文学习开源框架OkHttp
OkHttp 是一个开源项目。它由 Square 开发并维护,是一个现代化、功能强大的网络请求库,主要用于与 RESTful API 交互或执行网络通信操作。它是 Android 和 Java 开发中非常流行的 HTTP 客户端,具有高效、可靠、可扩展的特点。 核心特点 高效…...

自研芯片逾十年,亚马逊云科技Graviton系列芯片全面成熟
在云厂商自研芯片的浪潮中,亚马逊云科技无疑是最早践行这一趋势的先驱。自其迈出自研芯片的第一步起,便如同一颗石子投入平静的湖面,激起了层层涟漪,引领着云服务和云上算力向着更高性能、更低成本的方向演进。 早在2012年&#x…...
Stable Diffusion 3 部署笔记
SD3下载地址:https://huggingface.co/stabilityai/stable-diffusion-3-medium/tree/main https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium comfyui 教程: 深度测评:SD3模型表现如何?实用教程助你玩转Stabl…...

微信小程序WXSS全局样式与局部样式的使用教程
微信小程序WXSS全局样式与局部样式的使用教程 引言 在微信小程序的开发中,样式的设计与实现是提升用户体验的关键部分。WXSS(WeiXin Style Sheets)作为微信小程序的样式表语言,不仅支持丰富的样式功能,还能通过全局样式与局部样式的灵活运用,帮助开发者构建美观且易于维…...

Docker 部署 MongoDB
🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🍃 vue-uniapp-template 🌺 仓库主页: GitCode💫 Gitee …...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...