当前位置: 首页 > news >正文

数据结构-堆的实现和应用

目录

1.堆的概念

2.堆的构建

3.堆的实现

4.堆的功能实现

4.1堆的初始化

4.2堆的销毁

4.3堆的插入

4.3.1向上调整

4.4堆的删除

4.4.1向下调整法

​编辑4.5取堆顶

5. 向上调整法和向下调整法比较

 6.堆的应用

6.1TOP-K问题

6.2TOP-K思路

6.2.1用前n个数据来建堆

6.2.2剩下的N-K 

6.3示例


1.堆的概念

堆的底层是数组,所以堆也是一种特殊的数组。

堆分为大堆和小堆

  • 大堆:父节点不小于子节点
  • 小堆:父节点不大于子节点

2.堆的构建

已经提到堆是一种数组,那么要怎么实现呢。

先以小堆为例,已知父节点不小于子节点,使用数组,数组下标0是根节点,1和2是他的子节点,接着1的子节点是3和4,2的子节点是5和6,这样就可以实现一个堆了。

3.堆的实现

既然是数组,就要有指针,容量大小。

4.堆的功能实现

4.1堆的初始化

4.2堆的销毁

4.3堆的插入

一直到这一步,都是和栈是相同的,因为我们插入数据了,这时我们无法保证这是一个堆,所以此时要进行向上调整。

4.3.1向上调整

因为此时插入是数据再最下面,所以要和上面的进行比较调整。

4.4堆的删除

我们是删除堆的最后一个元素,要怎么删除呢,我们可以将最后一个元素和第一个元素进行交换,然后使堆向下调整即可。

        

4.4.1向下调整法

4.5取堆顶

5. 向上调整法和向下调整法比较

推导时间复杂度,由于用图来表示有些难度,这里直接用笔写出来

这是向下调整法的推导过程

向下调整建堆的时间复杂度如图

下面是向上调整建堆的时间复杂度推导

总结:向上调整算法建堆是优于向下调整建堆的。

 6.堆的应用

6.1TOP-K问题

这种问题通常是在较大的数据样本中取出其中的最值,这时就可以通过堆来完成。

通常这类问题样本较大,排序就不太可取,可以建堆来实现。

6.2TOP-K思路

6.2.1用前n个数据来建堆

求最大的前n个就建小堆

求最小的前n个就建大堆

6.2.2剩下的N-K 

用剩下的N-K个数据来和堆顶数据比较,不满足就替换堆顶元素

6.3示例

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
#include<time.h>
void test()
{HP hp;HPInit(&hp);HPPush(&hp, 2);HPPush(&hp, 4);HPPush(&hp, 1);HPPush(&hp, 1); printf("%d", HPTop(&hp));}
void CreateNDate()
{int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (file == NULL){perror("fopen fail");return;}for (int i = 0; i < n; i++){int x = (rand() + i) % 1000000;fprintf(fin, "%d\n", x);}fclose(fin);
}
void topk()
{int k = 0;printf("输入k的值\n");scanf("%d", &k);const char* file = "data.txt";FILE* fout = fopen(file, "r");int* arr = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++){fscanf(fout, "%d", &arr[i]);}//建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, i, k);}int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > arr[0]){arr[0] = x;AdjustDown(arr, 0, k);}}for (int i = 0; i < k; i++) {printf("%d ", arr[i]);}fclose(fout);
}int main()
{CreateNDate();topk();return 0;
}

相关文章:

数据结构-堆的实现和应用

目录 1.堆的概念 2.堆的构建 3.堆的实现 4.堆的功能实现 4.1堆的初始化 4.2堆的销毁 4.3堆的插入 4.3.1向上调整 4.4堆的删除 4.4.1向下调整法 ​编辑4.5取堆顶 5. 向上调整法和向下调整法比较 6.堆的应用 6.1TOP-K问题 6.2TOP-K思路 6.2.1用前n个数据来建堆 6.…...

数据分析的尽头是web APP?

数据分析的尽头是web APP&#xff1f; 在做了一些数据分析的项目&#xff0c;也制作了一些数据分析相关的web APP之后&#xff0c;总结自己的一些想法和大家分享。 1.web APP是呈现数据分析结果的另外一种形式。 数据分析常见的结果是数据分析报告&#xff0c;可以是PPT或者…...

YOLO系列论文综述(从YOLOv1到YOLOv11)【第3篇:YOLOv1——YOLO的开山之作】

YOLOv1 1 摘要2 YOLO: You Only Look Once2.1 如何工作2.2 网络架构2.3 训练2.4 优缺点 YOLO系列博文&#xff1a; 【第1篇&#xff1a;概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇&#xff1a;YOLO系列论文、代码和主要优缺点汇总】 ——————————…...

容器和它的隔离机制

什么是容器和它的隔离机制&#xff1f; 容器 是一种轻量化的虚拟化技术&#xff0c;它允许多个应用程序共享同一个操作系统&#xff08;OS&#xff09;内核&#xff0c;同时为每个应用程序提供自己的运行环境。容器通过利用 Linux 的内核功能&#xff08;如 Namespaces 和 Cgr…...

【数据结构与算法】排序算法总结:冒泡 / 快排 / 直接插入 / 希尔 / 简单选择 / 堆排序 / 归并排序

1 排序 1.1 冒泡 内排序的交换排序类别 1.1.1 普通实现 public class BubbleSort {/*** 基本的 冒泡排序*/public static void bubbleSort(int[] srcArray) {int i,j; // 用于存放数组下标int temp 0; // 用于交换数值时临时存放值for(i0;i<srcArray.length-1;i){// j …...

Windows Serv 2019 虚拟机 安装Oracle19c,图文详情(超详细)

1、下载安装文件 Oracle官网下载直链&#xff1a;https://www.oracle.com/database/technologies/oracle-database-software-downloads.html#db_ee 夸克网盘下载&#xff1a;https://pan.quark.cn/s/1460a663ee83 2、新建 Windows Server 2019 虚拟机 &#xff08;超详细&a…...

数字孪生开发之 Three.js 插件资源库(2)

在当今数字化快速发展的时代&#xff0c;数字孪生技术正逐渐成为各个领域的关键技术之一。它通过创建物理实体的虚拟副本&#xff0c;实现对实体的实时监测、模拟和优化&#xff0c;为企业和组织带来了诸多好处&#xff0c;如提高生产效率、降低成本、改进产品质量等。然而&…...

小米C++ 面试题及参考答案下(120道面试题覆盖各种类型八股文)

指针和引用的区别?怎么实现的? 指针和引用有以下一些主要区别。 从概念上来说,指针是一个变量,它存储的是另一个变量的地址。可以通过指针来间接访问所指向的变量。例如,我们定义一个整型指针int *p;,它可以指向一个整型变量的内存地址。而引用是一个别名,它必须在定义的…...

OpenOCD之J-Link下载

NOTE&#xff1a;此篇文章由笔者的 VSCode编辑GCC for ARM交叉编译工具链Makefile构建OpenOCD调试&#xff08;基于STM32的标准库&#xff09;派生而来。 1.下载USB Dirver Tool.exe&#xff0c;选择J-Link dirver&#xff0c;替换成WinUSB驱动。&#xff08;⭐USB Dirver Tool…...

华为云云连接+squid进行正向代理上网冲浪

1 概述 ‌Squid‌是一个高性能的代理缓存服务器&#xff0c;主要用于缓冲Internet数据。它支持多种协议&#xff0c;包括FTP、gopher、HTTPS和HTTP。Squid通过一个单独的、非模块化的、I/O驱动的进程来处理所有的客户端请求&#xff0c;这使得它在处理请求时具有较高的效率‌。…...

情绪识别项目

文章目录 1、mp4s文件转mp3文件2、Audition下载3、Audition安装4、Audition使用&#xff1a; 1、mp4s文件转mp3文件 在线转&#xff1a;Convert audio to MP3&#xff08;https://audio.online-convert.com/convert-to-mp3&#xff09; 2、Audition下载 Audition CC2019/64位…...

【RISC-V CPU debug 专栏 2.2 -- Hart DM States】

文章目录 Hart DM StatesHart 的 DM 状态1. 不存在(Non-existent)2. 不可用(Unavailable)3. 运行(Running)4. 暂停(Halted)状态转换与复位行为状态指示信号Hart DM States 在 RISC-V 调试架构中,每个可以被选择的硬件线程(hart)处于以下四种调试模块(DM)状态之一…...

从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!

爆款标题&#xff1a; 《从零样本到少样本学习&#xff1a;一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用&#xff01;》 正文&#xff1a; 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言…...

【LC】3101. 交替子数组计数

题目描述&#xff1a; 给你一个二进制数组nums 。如果一个子数组中 不存在 两个 相邻 元素的值 相同 的情况&#xff0c;我们称这样的子数组为 交替子数组 。返回数组 nums 中交替子数组的数量。 示例 1&#xff1a; 输入&#xff1a; nums [0,1,1,1] 输出&#xff1a; 5 …...

如何构建SAAS项目

在后台使用JDBC方式动态创建用户输入的数据库信息&#xff08;库名、地址、用户名、密码&#xff09; 执行预先写好的sql文件&#xff08;如mybatis的scriptRunner)执行建表语句及插入基础数据&#xff08;管理员用户、普通用户&#xff09;...

树莓派搭建NextCloud:给数据一个安全的家

前言 NAS有很多方案&#xff0c;常见的有 Nextcloud、Seafile、iStoreOS、Synology、ownCloud 和 OpenMediaVault &#xff0c;以下是他们的特点&#xff1a; 1. Nextcloud 优势&#xff1a; 功能全面&#xff1a;支持文件同步、共享、在线文档编辑、视频会议、日历、联系人…...

深入解读 MongoDB 查询耗时:Execution 和 Fetching 阶段详解

在使用 MongoDB 时&#xff0c;查询性能的分析与优化是开发者关注的重点。MongoDB 的查询过程通常分为两个主要阶段&#xff1a;Execution&#xff08;执行阶段&#xff09;和Fetching&#xff08;拉取阶段&#xff09;。每个阶段的耗时代表不同的性能瓶颈&#xff0c;优化思路…...

frida_hook_dlopen(当年到lib目录下找发现一个so都没有,hook下dlopen)

Frida 脚本用于拦截 Android 应用程序中的 dlopen 和 android_dlopen_ext 函数。这两个函数用于动态加载共享库&#xff0c;脚本通过拦截这些函数的调用来记录加载的库的路径。 代码分析 var dlopen Module.findExportByName(null, "dlopen"); // 6.0 var android…...

Zero to JupyterHub with Kubernetes中篇 - Kubernetes 常规使用记录

前言&#xff1a;纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 参考&…...

WordCloud去掉停用词(fit_words+generate)的2种用法

-------------词云图集合------------- WordCloud去掉停用词&#xff08;fit_wordsgenerate&#xff09;的2种用法 通过词频来绘制词云图&#xff08;jiebaWordCloud&#xff09; Python教程95&#xff1a;去掉停用词词频统计jieba.tokenize示例用法 将进酒—李白process_t…...

Python 中如何处理异常?

在Python中&#xff0c;异常处理是一种重要的编程技术&#xff0c;它允许开发者优雅地处理程序运行过程中出现的错误或异常情况&#xff0c;而不是让程序直接崩溃。 通过异常处理&#xff0c;我们可以使程序更加健壮、用户友好。 异常处理的基本结构 Python中最基本的异常处…...

C++——多态(下)

目录 引言 多态 4.多态的原理 4.1 虚函数表指针 4.2 多态的原理 5.单继承和多继承关系的虚函数表 5.1 单继承中的虚函数表 5.2 多继承中的虚函数表 结束语 引言 接下来我们继续学习多态。 没有阅读多态&#xff08;上&#xff09;的可以点击下面的链接哦~ C——多态…...

qsort函数详解+代码展示

文章目录 概要系列文章目录前言(1) 定义(2) 使用&#xff08;举例子 上代码&#xff09;1、定义数组&#xff1a;2、定义比较函数&#xff1a;3、调用 qsort&#xff1a;4、输出结果&#xff1a; (3) 注意事项 小结 概要 本篇博客将详细地介绍qsort排序函数&#xff0c;&#x…...

leetcode hot100【LeetCode 136. 只出现一次的数字】java实现

LeetCode 136. 只出现一次的数字 题目描述 给定一个非空整数数组&#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 …...

(免费送源码)计算机毕业设计原创定制:Java+ssm+JSP+Ajax SSM棕榈校园论坛的开发

摘要 随着计算机科学技术的高速发展,计算机成了人们日常生活的必需品&#xff0c;从而也带动了一系列与此相关产业&#xff0c;是人们的生活发生了翻天覆地的变化&#xff0c;而网络化的出现也在改变着人们传统的生活方式&#xff0c;包括工作&#xff0c;学习&#xff0c;社交…...

对抗攻击算法:FGSM和PGD

FGSM 传送门 FGSM 利用了梯度上升的思想&#xff0c;通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向&#xff0c;并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是&#xff0c;沿着这个梯度的符号方向对图像进行微调&#xff0c;以最大化损失函数。具…...

【八股文】小米

文章目录 一、vector 和 list 的区别&#xff1f;二、include 双引号和尖括号的区别&#xff1f;三、set 的底层数据结构&#xff1f;四、set 和 multiset 的区别&#xff1f;五、map 和 unordered_map 的区别&#xff1f;六、虚函数和纯虚函数的区别&#xff1f;七、extern C …...

xtu oj 众数

样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路&#xff1a;与数组大小有关&#xff0c;先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3)&#xff0c;3出现的次数为3&#xff0c;即众数为3&#xff0c;需要修改多少次…...

ENVI计算ROI分离度为灰色compute roi separability

我们在使用ENVI做影像分类的时候&#xff0c;需要采集样本兴趣区&#xff08;ROI&#xff09;&#xff0c;在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题&#xff1a; “一个是必须首先选择或创建至少…...

Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测

目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...

网站建设需要多少工种/优秀企业网站欣赏

排序在我们的生活和生产中是很重要的, 据说在计算时代早期, 大家普遍认为30%的计算周期都用在了排序上, 现在的这个比例下降了, 原因可能是排序算法更加高效, 但绝不可能是因为排序的重要性降低了 这篇文章不会像书上说的那样实现Comparable接口, 接下来的所有代码都将是对整型…...

无锡企业网站制作公司/制作网页教程

目前自动化测试可谓是人人在提&#xff0c;而且自动化工具和一些开源框架也是层出不穷。截止现在&#xff0c;我也接触了一些自动化的知识&#xff0c;分享下。 一、WebUI自动化 1. 工具或框架 Unittest框架&#xff0c;SeleniumWebdriverPython集成开发 优势&#xff1a; ①…...

网站建设最新教程/91关键词排名

每当我尝试从特定主机调试HTTPS流量(在我的Android手机上)时,我在fiddler检查器窗口中收到以下错误消息.After the client received notice of the established CONNECT, it failed to send any data.你能告诉我,我做错了什么吗&#xff1f;我在我的三星galaxy s2上调试网络请求…...

做类似猪八戒网的网站/郑州品牌网站建设

文章目录1.sudo !!2.mtr 命令3.nl 命令4.shulf 和tree 、pstreeshulf 命令tree命令pstree 这个是进程按树形结构显示&#xff0c;显示当前进程以及相关子进程&#xff0c;输出信息跟“tree”类似5.last 命令6.curl ifconfig.me7.lsof -i:端口号8.cut 命令9.seq 命令11.关于 脚本…...

如何建立企业网站/太仓seo网站优化软件

1.丢弃小数部分,保留整数部分parseInt(5/2) 2.向上取整,有小数就整数部分加1 Math.ceil(5/2) 3,四舍五入. Math.round(5/2) 4,向下取整 Math.floor(5/2) Math 对象的方法 方法描述abs(x)返回数的绝对值acos(x)返回数的反余弦值asin(x)返回数的反正弦值atan(x)以介于 -PI/2 与 P…...

公司理念网站/搜索引擎推广试题

Btrfs 简介文件系统似乎是内核中比较稳定的部分&#xff0c;多年来&#xff0c;人们一直使用 ext2/3&#xff0c;ext 文件系统以其卓越的稳定性成为了事实上的 Linux 标准文件系统。近年来 ext2/3 暴露出了一些扩展性问题&#xff0c;于是便催生了 ext4 。在 2008 年发布的 Lin…...