决策树——基于乳腺癌数据集与cpu数据集实现
决策树——乳腺癌数据实现
4.1 训练决策树模型,并计算测试集的准确率
1. 读入数据
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
biopsy=datasets.load_breast_cancer() #数据集是一个字典
X=biopsy['data']
Y=biopsy['target']
X_train,X_test,Y_train,Y_test\=train_test_split(X,Y,random_state=14) #划分为训练集和测试集
#2. 决策树回归模型
clf=DecisionTreeClassifier(random_state=14)
clf.fit(X_train,Y_train)
Y_test_pred_onetree=clf.predict(X_test)
accuracy_onetree=np.mean(Y_test_pred_onetree==Y_test)*100
print("The test accuracy is {:.1f}%".format(accuracy_onetree))
#93.0%
def show_table(y_true,y_pred):from sklearn.metrics import confusion_matriximport numpy as npimport pandas as pdmatrix=confusion_matrix(y_true,y_pred)level=np.unique(y_true).tolist()Index=['True_'+str(content) for content in level]columns=['pred_'+str(content) for content in level]return(pd.DataFrame(matrix,index=Index,columns=columns))
confusion_matrix(Y_test,Y_test_pred_onetree)
The test accuracy is 93.0%array([[46, 7],[ 3, 87]], dtype=int64)
show_table(Y_test,Y_test_pred_onetree)
| pred_0 | pred_1 | |
|---|---|---|
| True_0 | 46 | 7 |
| True_1 | 3 | 87 |
4.2 Bagging算法,集成学习
Bagging(Bootstrap Aggregating)算法是一种集成学习方法,通过结合多个模型的预测结果来提高整体模型的性能和稳定性。其基本思想是通过对原始数据集进行多次有放回的随机抽样,生成多个不同的子数据集,并在每个子数据集上训练一个基模型。最终的预测结果通过对所有基模型的预测结果进行平均(回归问题)或投票(分类问题)来确定。
Bagging算法的主要步骤如下:
- 从原始数据集中有放回地随机抽样,生成多个子数据集。
- 在每个子数据集上训练一个基模型(如决策树)。
- 对新数据进行预测时,将所有基模型的预测结果进行平均或投票,得到最终的预测结果。
Bagging算法的优点包括:
- 降低模型的方差,减少过拟合。
- 提高模型的稳定性和泛化能力。
下面是一个使用Bagging算法进行分类的示例代码:
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd# 加载数据集
data = pd.read_csv('../data/第4章数据/cpus.csv', index_col=0)
Y = data['perf']
Xnames = data.columns
X = data[Xnames[0:6]]# 确保X和Y的样本数量相同
if X.shape[0] != Y.shape[0]:raise ValueError("X和Y的样本数量不同")# 划分数据集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=14)# 初始化Bagging分类器,基模型为决策树
bagging = BaggingClassifier(DecisionTreeClassifier(random_state=14), random_state=14)# 在训练数据上训练模型
bagging.fit(X_train, Y_train)# 在测试数据上进行预测
Y_test_pred_bagging = bagging.predict(X_test)# 计算准确率
accuracy_bagging = accuracy_score(Y_test, Y_test_pred_bagging) * 100
print("测试集准确率为 {:.1f}%".format(accuracy_bagging))
这个示例代码展示了如何使用Bagging算法结合决策树进行分类,并计算测试集的准确率。
#例4.3
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier# Initialize the Bagging Classifier with a Decision Tree
bagging = BaggingClassifier(DecisionTreeClassifier(random_state=14), random_state=14)# Fit the model on the training data
bagging.fit(X_train, Y_train)# Predict on the test data
Y_test_pred_bagging = bagging.predict(X_test)# Calculate the accuracy
accuracy_bagging = np.mean(Y_test_pred_bagging == Y_test) * 100
print("The test accuracy is {:.1f}%".format(accuracy_bagging))
The test accuracy is 92.3%
show_table(Y_test, Y_test_pred_bagging)
| pred_0 | pred_1 | |
|---|---|---|
| True_0 | 45 | 8 |
| True_1 | 3 | 87 |
4.3 随机森林算法
随机森林(Random Forest)算法是一种集成学习方法,通过结合多个决策树的预测结果来提高整体模型的性能和稳定性。其基本思想是通过构建多个决策树,并将每棵树的预测结果进行平均(回归问题)或投票(分类问题),从而得到最终的预测结果。
随机森林算法的主要步骤如下:
- 数据集随机采样:从原始数据集中有放回地随机抽样,生成多个子数据集。
- 决策树训练:在每个子数据集上训练一棵决策树。每棵树在训练时只使用数据集的一个随机子集,并且在每个节点的分裂时只考虑特征的一个随机子集。
- 预测结果集成:对新数据进行预测时,将所有决策树的预测结果进行平均(回归问题)或投票(分类问题),得到最终的预测结果。
随机森林算法的优点包括:
- 降低过拟合:通过集成多个决策树,随机森林可以有效降低模型的方差,减少过拟合。
- 提高泛化能力:随机森林在处理高维数据和大数据集时表现良好,具有较强的泛化能力。
- 处理缺失值:随机森林可以处理部分缺失的数据,不需要对缺失值进行特殊处理。
- 计算特征重要性:随机森林可以计算每个特征的重要性,有助于特征选择和数据理解。
随机森林算法的缺点包括:
- 计算开销大:由于需要训练大量的决策树,随机森林的训练和预测时间较长,计算开销较大。
- 模型解释性差:由于集成了多个决策树,随机森林的模型解释性较差,不容易理解每个特征对最终预测结果的影响。
下面是一个使用随机森林算法进行分类的示例代码:
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn相关文章:
决策树——基于乳腺癌数据集与cpu数据集实现
决策树——乳腺癌数据实现 4.1 训练决策树模型,并计算测试集的准确率 1. 读入数据 from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix …...
探索空间自相关:揭示地理数据中的隐藏模式
目录 一、什么是空间自相关? 类型 二、空间自相关的数学基础 空间加权矩阵 三、度量空间自相关的方法 1. 全局自相关 2. 局部自相关 四、空间自相关的实际应用 五、Python实现空间自相关分析 1. 数据准备 2. 计算莫兰指数 3. 局部自相关(LISA 分析&…...
echarts使用示例
柱状图折线图 折柱混合:https://echarts.apache.org/examples/zh/editor.html?cmix-line-bar option {title:{show: true},tooltip: {trigger: axis,axisPointer: {type: cross,crossStyle: {color: #999}}},toolbox: {feature: {dataView: { show: true, readOnl…...
Flink高可用配置(HA)
从Flink架构中我们可以看到,JobManager这个组件非常重要,是中心协调器,负责任务调度和资源管理。默认情况下,每个Flink集群只有一个JobManager实例。这会产生单点故障(SPOF):如果JobManager崩溃,则无法提交新程序,正在运行的程序也会失败。通过JobManager的高可用性,…...
如何编写出色的技术文档
目录 编辑 1. 明确文档目的和受众 目的的重要性 了解受众 2. 收集和组织信息 信息收集的技巧 组织信息 3. 规划文档结构 结构规划的重要性 结构规划的步骤 4. 编写内容 语言和风格 内容的组织 编写技巧 5. 审阅和测试 审阅的重要性 测试的必要性 6. 版本控…...
学习日记_20241126_聚类方法(谱聚类Spectral Clustering)
前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…...
图书系统小案例
目前就实现了分页查询,修改,删除功能 这个小案例练习到了很多技能,比如前后端交互、异步请求、三层架构思想、后端连接数据库、配置文件、基础业务crud等等 感兴趣的小伙伴可以去做一个试试 准备工作 1、使用maven构建一个web工程 打开i…...
目标检测之学习路线(本科版)
以下是为一名计算机科学与技术本科大四学生整理的“目标检测”学习路线,结合了从基础到高级的内容,适合初学者逐步深入。每个阶段都有明确的学习要求、学习建议和资源推荐。 阶段一:基础知识学习 学习要求: 掌握编程语言 Pytho…...
C#调用C++ DLL方法之C++/CLI(托管C++)
托管C与C/CLI前世今生 C/CLI (C/Common Language Infrastructure) 是一种用于编写托管代码的语言扩展,它是为了与 .NET Framework 进行互操作而设计的。C/CLI 是 C 的一种方言,它引入了一些新的语法和关键字,以便更好地支持 .NET 类型和垃圾…...
免费搭建一个属于自己的个性化博客(Hexo+Fluid+Github)
文章目录 0.简介1. 下载安装fluid主题2. 创建文章3. 添加分类及标签3.1 创建“分类”选项3.2 创建“标签”选项4. 文章中插入图片5. 添加阅读量统计6. 添加评论功能7. 显示文章更新时间8. 为hexo添加latex支持小结参考文献0.简介 通过HEXO模板和Fluid主题搭建自己的博客,预览…...
vue3 开发利器——unplugin-auto-import
这玩意儿是干啥的? 还记得 Vue 3 的组合式 API 语法吗?如果有印象,那你肯定对以下代码有着刻入 DNA 般的熟悉: 刚开始写觉得没什么,但是后来渐渐发现,这玩意儿几乎每个页面都有啊! 每次都要写…...
开发需求总结19-vue 根据后端返回一年的数据,过滤出符合条件数据
需求描述: 定义时间分界点:每月26号8点,过了26号8点则过滤出data数组中符合条件数据下个月的数据,否则过滤出当月数据 1.假如现在是2024年11月14日,那么过滤出data数组中日期都是2024-11月的数据; 2.假如…...
人工智能如何改变创新和创造力?
王琼工作室 输出的力量 有了GPT这样的人工智能平台,创新和创造力的机会在哪里? 我们是否有信心: 面对效率,超越效率。 把问题拓展为机会? 把机会拓展为价值? 让智能更好地和我们协作,走心、走…...
Github 基本使用学习笔记
1. 基本概念 1.1 一些名词 Repository(仓库) 用来存放代码,每个项目都有一个独立的仓库。 Star(收藏) 收藏你喜欢的项目,方便以后查看。 Fork(克隆复制项目) 复制别人的仓库&…...
群论入门笔记
群的基本定义 群由一组元素 G 和一个运算(常用符号包括 ,x , 或 ∗)组成。 封闭性 对于任意两个元素 x,y∈G,运算 x * y 的结果仍然属于集合 G,即: ∀x,y∈G,x∗y∈G. 结合律 对于任意 a,b,c∈G&…...
2024最新python使用yt-dlp
2024最新python使用yt-dlp下载YT视频 1.获取yt的cookie1)google浏览器下载Get cookies.txt LOCALLY插件2)导出cookie 2.yt-dlp下载[yt-dlp的GitHub地址](https://github.com/yt-dlp/yt-dlp?tabreadme-ov-file)1)使用Pycharm(2024.3)进行代码…...
Python + 深度学习从 0 到 1(00 / 99)
希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持! ⭐ 什么是深度学习? 人工智能、机器学习与…...
单点登录深入详解之设计方案总结
基于cookie的单点登录解决方案 概述 用户登录之后 , 将认证信息存储至 Cookie ,当再次访问本服务或者访问其他应用服务时,直接从 Cookie 中传递认证信息,进行鉴权处理。 问题 1. 如何保障Cookie内用户认证信息的安全性? 第一, Cookie…...
Loadsh源码分析-forEach,eachRight,map,flatMap,flatMapDeep,flatMapDepth
处理数组array的函数已经学习完,接下来是collection相关的函数, collection指的是一组用于处理集合(如数组或对象)的工具函数。 lodash源码研读之forEach,forEachRight,map,flatMap,flatMapDeep,flatMapDepth 一、源码地址 GitH…...
检测到“runtimelibrary”的不匹配项: 值“mtd_staticdebug”不匹配值“mdd_dynamic”
1. 解释“runtimelibrary”不匹配错误的含义 在Visual Studio中,LNK2038错误表示链接器检测到项目与其依赖的库之间存在“Runtime Library”(运行时库)的不匹配。具体来说,这意味着编译项目时使用的运行时库类型与编译依赖库时使…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
